Knowledge Representation

Slides:



Advertisements
Similar presentations
Unit 9. Look at the picture of 1a and think about the questions: 1. How many people are there in the picture? 2. Where are they? 3. What are the two.
Advertisements

Chapter 2 Combinatorial Analysis 主講人 : 虞台文. Content Basic Procedure for Probability Calculation Counting – Ordered Samples with Replacement – Ordered.
选项可猜测性评判与控制 实证研究 上海外国语大学 2008 级博士生 湖南师范大学外国语学院副教授 —— 邓杰.
A self-reflection of my teaching design Unit 1 New Friends New Faces 戴弘梧.
短文改错解题技巧 1 )错词 2 )多词 3 )缺词 更正 删除 补漏 短文改错(共 10 小题,每小题 1 分,满分 10 分) 假定英语课上老师要求同桌之间交换修改作文,请你 修改你同桌写的以下作文。文中共有 10 处语言错误, 每句中最多有两处。错误涉及一个单词的增加、删除 或修改。 增加:在缺词处加一个漏字符号(
第七课:电脑和网络. 生词 上网 vs. 网上 我上网看天气预报。 今天早上看了网上的天气预报。 正式 zhèngshì (报告,会议,纪录) 他被这所学校正式录取 大桥已经落成,日内就可以正式通车 落伍 luòw ǔ 迟到 chídào 他怕迟到,六点就起床了.
國立成功大學 外文系 高實玫 “Theme”及“Rheme”的應用 國立成功大學 外文系 高實玫
Section B Period Two.
第1 5章谓词演算.
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
Ch02物件導向程式設計 物件導向系統分析與設計.
The Argument for Impartial Caring in the Mozi 14-16
┃陈述句┃ 陈述句是用于陈述事实和观点的句子。包括肯定结构和否定结构。肯定句变否定句的基本方法如下: 1.be 动词的否定式:在be动词后面加否定词not。如:We aren't classmates. 我们不是同学。 2.情态动词的否定式:在情态动词后面直接加否定词not。如: I can't speak.
真實的敬拜 二 True Worship 2.
中职英语课程改革中 如何实践“以就业为导向,服务为宗旨”的办学理念
用括号中所给动词的正确形式填空(有提示词)
CET Error Correction 考查重点 解题思路 答题步骤 本张灯片的三个按钮都有链接.
探 索 与 创 新 夏若出版社.
广德二中2006届高考 英语专题复习 单项填空 答题指导.
真题重现:广东高考中的不定式。 1 (2008年高考题)For example, the proverb,“ plucking up a crop _________(help) it grow ,” is based on the following story… 2 (2007年高考题)While.
3. 一般問題 部份資料來源: YAHOO網 及本校08年升中學生提供
Unit 2 Topic 2 What does she look like? Section D 龙岩初级中学 余军.
Unit 9 What does he look like?
The keys to Unit 2 Section A 趣味英语
Unit 7 Protect the Earth (Story time) 觅渡教育集团 王 珏 标题 课时 教师姓名 日期 1.
What do you think of game shows?
Could you please clean your room?
Unit 5.
Module 5.
關聯式資料庫.
Hui-Ju Chuang University of Hawaii-Manoa
初二英语写作课 课件 福建省闽清县第一中 王国豪
英语教学课件系列 八年级(上) it! for Go.
顏色yán sè COLORS 紅色 藍色 綠色 黃色 紫色 白色 黑色 咖啡色 bái sè hēi sè hóng sè lǜ sè
创建型设计模式.
Unit 5 Why do you like pandas?
Dì二十課 看bìng Dì二十课 看bìng
离散数学─逻辑和证明 南京大学计算机科学与技术系
Historical background: Descartes and Locke
A Concise English Grammar
Formal Pivot to both Language and Intelligence in Science
陕西省教育科学研究所 张雪莲 初中英语教学与2011年中考命题趋势思考 陕西省教育科学研究所 张雪莲
英语表示人体部位的词 Body Parts in English 温州中学 张怡.
第4章(1) 空间数据库 —数据库理论基础 北京建筑工程学院 王文宇.
Lesson 44:Popular Sayings
單元11: 事件結構 主題: a. 事件結構概述 b. 如何使用事件結構 c. 使用事件結構須注意的事項.
Chapter 3 Nationality Objectives:
Unit 1 鸳大九义校 杨付春.
十七課 選課(xuǎn kè) 十七课 选课(xuǎn kè)
第十五课:在医院看病.
英语教学课件 九年级全.
Review Final Chinese 2-Chapter 6~10-1
句子成分的省略(1).
SectionA(Grammar Focus-4c)
高中英文第一冊 第六單元 重補修用.
Unit 8 Our Clothes Topic1 What a nice coat! Section D 赤峰市翁牛特旗梧桐花中学 赵亚平.
计算机问题求解 – 论题1-7 - 不同的程序设计方法
Unit 2 命題與論證 授課教師:傅皓政 老師 【本著作除另有註明外,採取創用CC「姓名標示-非商業性-相同方式分享」台灣3.0版授權釋出】
中国科学技术大学计算机系 陈香兰 2013Fall 第七讲 存储器管理 中国科学技术大学计算机系 陈香兰 2013Fall.
中央社新聞— <LTTC:台灣學生英語聽說提升 讀寫相對下降>
從 ER 到 Logical Schema ──兼談Schema Integration
Chapter 3 What Is Money?.
关系代词.
定语从句 ●关系词的意义及作用 : 定语从句一般都紧跟在它所修饰名词后面,所以如果在名词或代词后面出现一个从句,根据它与前面名词或代词的逻辑关系来判断是否是定语从句。
计算机问题求解 – 论题1-5 - 数据与数据结构 2018年10月16日.
英语单项解题思路.
怎樣把同一評估 給與在不同班級的學生 How to administer the Same assessment to students from Different classes and groups.
高考英语短文改错答题技巧 砀山中学 黄东亚.
Why do you like pandas? Section B 1a-2c.
O W E L C M E.
Presentation transcript:

Knowledge Representation Chapter 5 Knowledge Representation 知識表示法 Expert Systems sstseng

5.1 The meaning of Knowledge(知識)  Knowledge(知識) + Inference (推論)= Expert Systems(專家系統)  Affect the development, efficiency, speed, and maintenance of      expert systems  epistemology: concerned with the nature, structure, and origin of knowledge  a priori comes from the Latin and means “That which precedes” Epistemology(認知論) Philosophic Theories ARISTOTLE PLATO LOCKE MILL A Priori Knowledge e.g. all triangles have 180 degrees (considered to be universally true) A posteriori Knowledge e.g. the light is green  a posteriori knowledge can be verified using  sense experience Expert Systems sstseng

Classifications of knowledge(知識)  Procedural Knowledge(程序性知識)   How to do something  Declarative Knowledge(陳述性知識)   The truth of something   “Don’t put your fingers in a pot of boiling water”  Tacit Knowledge(隱含知識)  (Unconscious Knowledge)   Cannot be expressed explicitly -An example is how to move your hand -Walking or riding a bicycle -ANS is related to tacit knowledge Expert Systems sstseng

Analogy to Wirth’s classic expression Algorithms + data structures = programs Knowledge + Inference = expert systems Expert Systems sstseng

Expert Systems sstseng Levels Meta Knowledge (rules about rules) Knowledge (rules+facts) Information (facts) Data Noise Expert Systems sstseng

Expert Systems sstseng The sequence of 12 numbers:137178007124 Without knowledge. This entire sequence may appear to be noise. Rule 1:IF Rain THEN Bring Raincoat Rule 2:IF Rain THEN Bring Umbrella Meta Rule 1:Try Rule 2 First Meta Rule 2:IF Ride a motorcycle THEN       Try Rule 1 First Meta knowledge is knowledge about knowledge and expertise. -would specify which knowledge base was applicable. Expert Systems sstseng

Expert Systems sstseng Representation(表示法)  Backus - Naur form  Ontology(本體論)  Semantic Network(語意網路)  Frames-based Knowledge(框架式知識)  Case-based Knowledge(案例式知識)  Rule-based Knowledge(規則式知識)  Knowledge Object(知識物件)  Logic(邏輯) Expert Systems sstseng

5.2 Backus - Naur form ( BNF )  This notation is a meta language for defining the     syntax of a language  Define the syntax of a language e.g. <sentence>::= <subject><verb><end-mark> <subject>::= I | You|We <verb> ::= left |came <end-mark> ::= . | ?|!  Parse Tree (derivation tree) sentence subject verb end-mark You came ? Expert Systems sstseng

Expert Systems sstseng 5.3 Ontology(本體論) Ontology一詞在90年代就開始被使用在人工智慧領域,描述知識的知識構成要素之間的關係。 Ontology的研究大致上可略為分為兩個方向: 針對特定的問題領域建立大量的Ontology 例如:建立某些領域詞彙的Ontology 研究Ontology的建構方法與表示方法 例如:利用XML(可延伸標記語言)或是RDF(資源描述格式) Expert Systems sstseng

Expert Systems sstseng Ontology的發展主要是用來使知識分享和再用更為容易。 不同的研究對於Ontology的表示與描述有不同的方法,目前還未看到較一般化、通用的表示法 。 範例:使用RDF來描述適性化教材的Ontology Expert Systems sstseng

5.4 Semantic Network(語意網路) (Quillian 67 & 68)  A classic AI representation technique used for   propositional information is sometimes called   Propositional Net  A proposition(命題) is a statement that is either true or false  A directed graph(有向圖形)  Node(點) : 知識的組成元素或是種類  Arc(有向線段) : 知識組成元素間的關  「is a」  「a kind of」 Expert Systems sstseng

Expert Systems sstseng General Net San Francisco Chicago New York Indianapolis Los Angeles Houston Expert Systems sstseng

Expert Systems sstseng A Semantic Net(語意網路) sister-of Carol David wife-of wife-of Ann Mark husband-of husband-of Father- of Mother- of father-of Mother-of wife-of Tom Susan husband-of father-of Mother-of John Expert Systems sstseng

Expert Systems sstseng 「is a」 and 「a kind of」  「is a」 : 在Tail(有向線段尾段)所表示的知識物件屬 於Head(有向線段頭段)的知識類別中的一 個例子。  「a kind of」(AKO) : 在Tail(有向線段尾段)的知識類別屬Head (有向線段頭段)所表示的知識類別。  Superclass(父類別) and Subclass(子類別)  Attribute, Value, Property  Inheritance(繼承) Expert Systems sstseng

A Semantic Network with 「is a」 and 「a kind of」(AKO) Links 鴿子 鳥 動物 is a AKO has-property 飛 A Semantic Network with 「is a」 and 「a kind of」(AKO) Links Expert Systems sstseng

A Semantic Network with 「is a」 and 「a kind of」(AKO) Links aircraft AKO AKO AKO round balloon Propeller driven jet has-shape AKO AKO AKO AKO AKO AKO ellipsoidal has-shape blimp special DC-3 DC-9 Concorde is a is a is a Goodyear Blimp Spirit of St. Louis Air Force 1 A Semantic Network with 「is a」 and 「a kind of」(AKO) Links Expert Systems sstseng

5.5 PROLOG and Semantic Nets(語意網路) Essentials(本質、要素) of PROLOG Each of the statements above is a PROLOG predicate(述部) expression, or simply a predicate.  Color(red).        ; red is a color  father_of(Tom,John).     ; Tom is the father of John  mother_of(Susan,John).   ; Susan is the mother of John  parents(Tom,Susan,John).   ; Tom and Susan are                parents of John Expert Systems sstseng

Expert Systems sstseng Predicates can also be expressed with relations such as the IS-A and HAS-A.  is_a (red,color).  has_a (John,father).  has_a (John,mother).  has_a (John,parents). Some additional predicates  is_a (Tom,father).  is_a (Susan,mother).  is_a (Tom,parent).  is_a (Susan,parent). Expert Systems sstseng

Expert Systems sstseng Programs in PROLOG consist of facts and rules in the general form of goals.    p:-p1,p2…pn. In which p is the rule’s head and the pi are the subgoals. The symbol,:-, is interpreted as an IF. parent (x,y) : - father (x,y). parent (x,y) : - mother(x,y). grandparent(x,y) :- parent (x,z) ,parent(z,y). and an ancestor can be defined as:  (1) ancestor(x,y) :- parent(x,y).  (2) ancestor(x,y) :- ancestor(x,z),ancestor(z,y). Expert Systems sstseng

General Organization of a PROLOG System Predicate Database (Rules and Facts) Queries Answers Interpreter User General Organization of a PROLOG System Expert Systems sstseng

Expert Systems sstseng  (3) parent (Ann,Mary).  (4) parent (Ann,Susan).  (5) parent (Mary,Bob).  (6) parent (Susan,John). As another example, suppose the query is :-ancestor(Ann,John). The first ancestor rule(1) matches and X is set to Ann and Y is set to John. PROLOG now tries to match the body of (1), parent (Ann,John) with every parent statement. Expert Systems sstseng

Expert Systems sstseng (1) is not true, the head cannot be true.  Because(1) cannot be true, PROLOG then tries the   second ancestor statement (2) X is set to Ann and Y is set to John. Control structure of PROLOG is of the Markov algorithm type, in which searching for pattern matching is normally determined by the order in which the Horn clauses are entered. Expert Systems sstseng

5.6 Schema (plural schemas or schematas) A semantic net(語意網路) is an example of a shallow knowledge(淺層知識) structure. A general term to describe a complex knowledge structure Focus on only relevant(有意義的) knowledge For examples:FRAME,SCRIPT Expert Systems sstseng

5.7 Frames-based Knowledge(框架式知識) (Minsky 75) Suitable for related knowledge about a narrow subject with much default knowledge script-a time-ordered sequence of frames Slot(槽):Attribute(屬性)  Slot 值:Value Example a car frame Expert Systems sstseng

Expert Systems sstseng Slot 值 Some frame-based tools (KEE) allow a wide range of items to be stored in slots an assigned value .a default value Rules .graphics Comments .debugging information questions for users .function procedural attachment .to other frame Expert Systems sstseng

Procedural Attachment If – needed, if-added, if-removed Examples:Human Property Expert Systems sstseng

Expert Systems sstseng Hierarchy Expert Systems sstseng

Expert Systems sstseng FRAMES School meeting A KIND OF Monthly Meeting Weekly Meeting Occasional Meeting IF-ADDED:inform the participants IF-REMOVED: inform IS A IF-ADDED:inform the person IF-REMOVED: inform the person IF-CHANGED:... Expert Systems sstseng

Difficulties with FRAMES(框架) Stereotype is that it have well defined features so that many of its slots have default values name             elephant specialization of        a-kind-of mammal color              gray legs               4 trunk             a cylinder Three-legged, two-legged Most frame(框架) systems do not? Provide a way of defining unalterable slots Nothing is really certain is such a unrestrained system Expert Systems sstseng

Expert Systems sstseng Shopping Script: C(customer),S(salesperson) M(merchandise),D(dollars) L(a store) 1.Centers L 2.C begins looking around 3. C looks for a specific M 4. C looks for any interesting M 5. C asks S for help 6. 7.C finds M’ 8. C fails to find M 9. C leaves L 10.C buys M’ 11.C leaves L 12. goto step 2 13.C leaves L 14.C takes M’ Expert Systems sstseng

Expert Systems sstseng Did Mary buy anything? Mary went shopping for a new coat. She found a new one. She really liked When she got it home, and discovered that it went perfectly with her favorite dress . Question:Did Mary buy anything? Expert Systems sstseng

5.8 Case-based Knowledge (案例式知識) 通常是用來描述屬於經驗的知識 從過去的經驗中,判定是何種相似的case(案例),並且依據過去解決此問題的方法,來解決此次問題 Case(案例) : 案例名稱 屬性 屬性值 案例名稱 屬性1 屬性值 屬性2 …… 屬性N Expert Systems sstseng

利用Case-based Knowledge(案例式知識)建構Expert System(專家系統) Case Retrieve(案例擷取) Case Reuse(案例再用) Case Revise(案例修正) Case Retain(案例更新) Expert Systems sstseng

Expert Systems sstseng 案例推論循環 Expert Systems sstseng

5.9 Rule-based Knowledge (規則式知識) 知識領域具備需要推論的特性 例如:醫生依據其所學的醫學知識及病人所呈現的症狀去判別所罹患的疾病 最基本的Rules(規則)形式 如果 「狀態」 則 「結論」 IF (condition) THEN (conclusion) Inference Chaining(推論鏈) Forward Inference(前向推論) Backward Inference(後向推論) Expert Systems sstseng

5.10 Knowledge Object (知識物件) Object Oriented(物件導向) Class(類別) and Object(物件) Super-class(父類別) and Sub-class(子類別) Inheritance(繼承)、Encapsulation(封裝)、Polymorphism(多型) Knowledge Object(知識物件) Object-Attribute-Value Triples ( OAV ) (物件-屬性-屬性值法) 物件導向規則庫管理系統 Knowledge Object Model(知識物件模型) Expert Systems sstseng

Object-Attribute-Value Triples ( OAV ) (物件-屬性-屬性值法) OAV can be used to characterizes all the knowledge(知識) in a semantic net(語意網路) and was used in MYCIN for diagnosing infections diseases Especially useful for representing facts(事實) for only a single object: only attribute-value pairs (AV) Expert Systems sstseng

Object-Attribute-Value Triples(物件-屬性-屬性值法) Car Wheel: 4 Function:run Object Attribute Value AKO AKO Door:3 . Door:4 . AKO AKO Carry:people size:small Carry:goods size:big AKO AKO price:$$$ Civic R9 price:$$$ price:$$$ price:$$$ ‧‧‧‧‧‧ ‧‧‧‧‧‧ is a is a year:1992 owner:crt year:1988 owner:gjh Expert Systems sstseng

Expert Systems sstseng Limitations Lack of standard names for links and nodes(點) Combinatorial explosion of searching nodes(點) Logically inadequate    no “for all”, “there exist”... Heuristically inadequate    no effective search heuristics Expert Systems sstseng

Expert Systems sstseng 物件導向規則庫管理系統 將規則集合與物件導向概念結合 Rule Class(規則類別) and Rule Object(規則物件) Expert Systems sstseng

Expert Systems sstseng 5.11 Logic(邏輯) A description team for logic programming and expert systems is automated reasoning systems Syllogism(三段論): The oldest and one of the simplest types of formal logic premise: all men are mortal premise: Socrates is a man Conclusion: Socrates is mortal Propositional Logic(命題邏輯) -a symbolic logic for manipulating propositions First-Order Predicate Logic(第一層敘述邏輯) Fuzzy Logic(模糊邏輯) Expert Systems sstseng

Propositional Logic(命題邏輯) A sentence whose truth value can be determined  e.g. it is raining    Feather ( Albatrass) Compound Statement  e.g.   If it is raining then carry an umbrella Expert Systems sstseng

Expert Systems sstseng Tautology  A compound statement that is always true  e.g. P  ~p Contradiction  A compound statement that is always false  e.g. P  ~p Contingent Statement  neither tautology nor contradiction  e.g. P Expert Systems sstseng

5.12 First - Order Predicate Logic(第一層敘述邏輯) Propositional logic(命題邏輯) is a subset of predicate logic(敘述邏輯) The basis of logic programming languages     e.g. Prolog Addition :    Variable universal quantifier: For all existential quantifier: There exist     e.g.   ( x) (x is a triangle x is a polygon) Expert Systems sstseng

Limitations of Predicate Logic(敘述邏輯) The following statement can’t be expressed in predicate logic(敘述邏輯): Most of the class received As To implement Most, a logic must provide some predicates for counting, e.g. fuzzy logic(模糊邏輯). Expert Systems sstseng

Expert Systems sstseng 知識表示法 邏輯(Logic)  語言正規而簡單(formal syntax)  嚴密的理論  完整的推理法則(rules of inference)  可證性  彈性大 模組性高(modularity) 不容易表示有處理(processing)和控制(control)的  知識 Expert Systems sstseng

Expert Systems sstseng 缺乏結構性 有時不太自然 解釋不易  採用解析原則(resolution principles)的邏輯  系統解不易  事實量大時,法則的選取(rule selection)會  有組合膨脹(combinatorial explosion)的現象 Expert Systems sstseng

Expert Systems sstseng Exercise 1. Draw an action frame system explaining what to do in case of hardware failure for your computer system. Consider disk crash , power supply , CPU, and memory problems. 2. Determine whether the following are valid or invalid arguments. A) pq, ~qr, r; ∴ p B)~pq, p(r  s),s q; ∴ q  r C) p (q r), q; ∴ p r Expert Systems sstseng

Expert Systems sstseng 專題進度規劃 10/18 交分組名單(每組最多四人) 11/01 交專題題目與初步構想書 11/29 交專題計劃書 12/20~1/10 上台presentation(每組十 五分鐘) 01/17 系統Demo & 交期末專題報告 Expert Systems sstseng

Expert Systems sstseng 誰殺了仙道?(1) 神奈川縣高中籃球決賽前夕,陵南高中籃球隊中的明星選手——仙道彰被殺死於自家住處。警方稍後拘捕了五名嫌犯。他們是湘北高中籃球隊的櫻木花道、三井壽、流川楓、赤木剛憲、宮城良田。在警方的盤問中,他們各人都要回答四個問題。但是由安西教練側面瞭解,各嫌犯所答的四個問題中有三個答案是真話,另一個答案是假話。而且兇手就是五人其中之一。以下是五人的供詞: Expert Systems sstseng

Expert Systems sstseng 誰殺了仙道?(2) 櫻木花道: (a)我沒有殺死仙道。 (b)我從未有手槍。 (c)流川楓討厭我。 (d)當天下午我在練球。 Expert Systems sstseng

Expert Systems sstseng 誰殺了仙道?(3) 三井壽: (a)我沒有殺死仙道。 (b)流川楓在今年內從未到過仙道家。 (c)我和赤木不熟。 (d)當天下午,我和櫻木在練球。 Expert Systems sstseng

Expert Systems sstseng 誰殺了仙道?(4) 流川楓: (a)我沒有殺死仙道。 (b)我今年內從未到過仙道家。 (c)我不討厭櫻木。 (d)如果赤木說我是兇手,這是謊言。 Expert Systems sstseng

Expert Systems sstseng 誰殺了仙道?(5) 赤木剛憲: (a)仙道被殺時,我在家中。 (b)我從未殺過人。 (c)流川楓是兇手。 (d)我和三井是好朋友。 Expert Systems sstseng

Expert Systems sstseng 誰殺了仙道?(6) 宮城良田: (a)如果櫻木說他從未有手槍,這是謊言。 (b)仙道在決賽前夕被殺的。 (c)命案發生時,赤木在家中。 (d)我們其中一人是兇手。 Expert Systems sstseng