第五章 剛體運動 當我們不再考慮物體為一質點,而是一有限大小的實體時,以粒子為考量中心所推論出的運動定律將不再足以描述此物體的運動狀態與變化。

Slides:



Advertisements
Similar presentations
第三节 函数的微分及其应用 一、微分的概念 二、微分的几何意义 三、微分的基本公式及其运算法则 四、微分在近似计算中的应用 五、小结、作业.
Advertisements

工職數學 第四冊 第一章 導 數 1 - 1 函數的極限與連續 1 - 2 導數及其基本性質 1 - 3 微分公式 1 - 4 高階導函數.
不定積分 不定積分的概念 不定積分的定義 16 不定積分的概念 16.1 不定積分的概念 以下是一些常用的積分公式。
自由落體運動:主題 一、自由落體( Freely Falling Body ) 二、一維自由落體運動的特性 範例 1 自由落體( v 0 =0 ) 範例 2 自由落體的函數圖 範例 3 鉛直上拋 範例 4 自由落體運動公式.
變數與函數 大綱 : 對應關係 函數 函數值 顧震宇 台灣數位學習科技股份有限公司. 對應關係 蛋餅飯糰土司漢堡咖啡奶茶 25 元 30 元 25 元 35 元 25 元 20 元 顧震宇 老師 台灣數位學習科技股份有限公司 變數與函數 下表是早餐店價格表的一部分: 蛋餅 飯糰 土司 漢堡 咖啡 奶茶.
内科护理学. 第四节 肝硬化病人的护理 第二章 呼吸系统疾病病人的护理 李玉环 案例 李先生, 54 岁。因腹胀、乏力及食欲下降 1 年,意识不清 2 小时入院。既往乙肝病史 20 年。 查体:意识模糊,面色灰暗、巩膜黄染、腹部膨隆, 肝未触及、脾大,移动性浊音阳性,双下肢 凹陷性水肿。 血液检查:
第三章 刚体力学基础 习 题 课.
学习情境三 分娩护理 任务二 异常分娩妇女的护理 子任务1 产力异常.
圓的一般式 內容說明: 由圓的標準式展出圓的一般式.
圓的一般式 內容說明: 由圓的標準式展出圓的一般式.
第十章 轉動 10-2 轉動的變數 10-3 角量是向量嗎? 10-4 等角加速度轉動 10-5 線與角變數的關連
2-1 力的分解與合成 2-2 力矩與力矩原理 2-3 力偶 2-4 自由體圖 2-5 同平面各種力系之合成與平衡 影片連結.
全威圖書有限公司 C0062.
12.4 切線向量和法向量 Tangent Vectors and Normal Vectors
Differentiation 微分 之一 微分的基本原理.
位移與向量(Displacement and Vector)
高中資優計畫物理實驗 --高一下學期(2005) 古煥球(物理館101室) 講解及實驗時間: 星期六下午1:00-4:00 (三小時) 講解室: 物理館019室 實驗室: 綜三館普物實驗室(助教負責) 實驗課本: 清華大學[普通物理實驗課本] + 講義.
普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo
第二十四單元 柱面與球面座標.
第五章 剛體運動 當我們不再考慮物體為一質點,而是一有限大小的實體時,以粒子為考量中心所推論出的運動定律將不再足以描述此物體的運動狀態與變化。
第六章 轉動 6-1 角速度和角加速度 6-2 純滾動 6-3 力矩和轉動 6-4 角動量和角動量守恆定律.
Differentiation 微分 之一 微分的基本原理.
10. Rotational Motion 轉動 Angular Velocity & Acceleration 角速度和加速度
第一章 狹義相對論.
普通物理 General Physics 10 - Rotational Motion I
實驗六 扭 擺 Torsion Pendulum
(Machine Axes and Coordinate Systems)
10. Rotational Motion 轉動 Angular Velocity & Acceleration 角速度和加速度
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
實驗 3 複擺.
全威圖書有限公司 C0062.
CHAPTER 7 轉動 第一節 定軸轉動 第二節 角動量與轉動慣量 第三節 角動量守恆.
一、目的(object) 驗證 角加速度 (angular acceleration, a ),
可降阶的高阶方程 一、 型的微分方程 二、不显含未知函数的方程 三、不显含自变量的方程.
功與能量的轉換 當外力對物體作功時, 會增加物體的位能或動能 功: 重力位能: 動能:
7.1 圓周運動的簡介 圓周軌道上的汽車 描述圓周運動 向心加速度 進度評估 第 2 冊 單元 7.1 圓周運動的簡介.
虎克定律與簡諧運動 教師:鄒春旺 日期:2007/10/8
點與圓.
第一章 直角坐標系 1-3 函數圖形.
Mechanics Exercise Class Ⅰ
ch8 - 轉動 § 8-1 角速度與角加速度 § 8-2 等角加速度轉動 § 8-3 力矩與轉動方程式 § 8-4 角動量與角動量守恆定律
电 场 力 的 功.
Short Version : 10. Rotational Motion 短版: 10.轉動
滾動(Rolling) 對純滾動運動而言,物體與平面之接觸點於接觸那一瞬間為靜止的,沒有任何的滑動。在此條件下,物體的質心運動為.
第一章 力和运动 §1-1 质点运动的描述 §1-2 圆周运动和一般曲线运动 §1-3 相对运动 常见力和基本力 §1-4 牛顿运动定律
因為質心的特別性質, 物體相對於質心的運動,對質心本身的運動沒有影響! 物體的運動包含質心的運動與繞質心的轉動:
中二 (綜合科學) 中三 (物理 PHYSICS Yau CY 化學 CHEMISTRY Wai CP
圓的定義 在平面上,與一定點等距的所有點所形成的圖形稱為圓。定點稱為圓心,圓心至圓上任意一點的距離稱為半徑,「圓」指的是曲線部分的圖形,故圓心並不在圓上.
位移與向量(Displacement and Vector)
體積.
95學年上學期高二物理 黃信健.
95學年上學期高二物理 黃信健.
石家庄市高三教学研讨会 学会与会学 操千曲而后晓声, 观千剑而后识器。刘勰 石家庄二中 刘凤果.
97學年上學期高二物理 黃信健.
Mechanics Exercise Class Ⅱ
討論.
• • • • ? §4.2 力矩 转动定律 转动惯量 一. 力矩 力 改变质点的运动状态 质点获得加速度 刚体获得角加速度
坐標 →配合課本 P49~56 重點 在坐標平面上,以 ( m , n ) 表示 P 點的坐標,記為 P ( m , n ),m 為 P 點的 x 坐標,n 為 P 點的 y 坐標。 16.
Chapter 9 慣性矩 9-1 面積慣性矩 9-2 平行軸原理 9-3 組合面積之慣性矩 9-4 迴轉半徑 9-5 質量慣性矩
剛體的旋轉 Rotation of Rigid Body
2 滾動、力矩角、動量.
第一章 直角坐標系 1-3 函數及其圖形.
3.2 平面向量基本定理.
4-1 變數與函數 第4章 一次函數及其圖形.
在直角坐標平面上兩點之間 的距離及平面圖形的面積
速度與加速度(Velocity and Acceleration)
5.2 弧度法 附加例題 1 附加例題 2.
靜力學(Statics) 5.慣 性 矩 周煌燦.
第一章 狹義相對論.
轉動實驗(I):轉動慣量 誰是誰?m, r, I 角加速度α的測量 轉動慣量的測量 轉動慣量的計算~平行軸定理.
Presentation transcript:

第五章 剛體運動 當我們不再考慮物體為一質點,而是一有限大小的實體時,以粒子為考量中心所推論出的運動定律將不再足以描述此物體的運動狀態與變化。

不一樣的運動 – 轉動 每點的位移都不一樣 每點的速度也都不一樣 連每點的加速度都是不一樣 ? ??? ??

從不同角度去探討轉動運動 在此我們只考慮不會變形的物體,也就是說,物體內任意兩點間的距離保持一定,我們稱具有此特性的物體為剛體。 q During a rotation  What could be the same?? q  The angular displacement - New Displacement Variable q

轉動動力學中的新參數I 若已給出質點的運動軌跡,則可採用弧座標S來確定質點位置。若S為運動軌道上一固定點Po到質點P的弧長(軌道長度),則S將因質點的運動而隨時間改變 S r q S=S(t) 質點的位置向量可視為S的函數 r=r[t(s)]=r(s) 在純轉動運動中,質點的位置向量為 S = r q r=常數 q = 角位移 Angular Displacement

角位移(Angular Displacement) 旋轉軸方向 [單位]:rad(弧度) 旋轉出來的弧長除以旋轉半徑,即 q(t) q(t)=s(t)/r 轉一圈=1rev=360°=2pr/r rad=2p rad 旋轉n(2p) rad回到原角位置(Angular Position) 旋轉角度為正方向

轉動動力學中的新參數II 位移對時間的一次微分為速度,所以有 其中 為位移大小 而向量 為質點運動沿S增加方向的切線單位向量,為位置(時間)的函數。

角速度(Angular Velocity) 在純轉動運動中,質點的速度為 w= 角速度 dq /dt [單位]:rad/s 其方向以右手來定義(如上圖)

轉動動力學中的新參數III 速度對時間的一次微分為加速度 等式中第一項為切線加速度,第二項為法線加速度。其中 r為曲率半徑 n為法線向量

角加速度(Angular Acceleration) 以純轉動運動為例 r = ds/dq=d(rq)/dq=r 切線加速度為 法線加速度為

轉動運動中的運動方程 在純轉動運動中,我們找到了相對於線性運動中位移、速度與加速度的新參數。由於之間的對應關係一樣,故於線性運動中所導出的運動學方程,也應相對的存在於純轉動運動的新參數之中。 (一) (二) (三)

The innermost first track Example: CD Player On a compact Disc, audio information is stored in a series of pits and flat areas on the surface of the disc that represent ones and zeros. The length of each one or zero is the same everywhere on the disc, and we wish that they pass the laser-lens system in same time period. Find the angular speed of the disc when information is been read from (a) the innermost first track (b) the outermost final track (In typical CD player, the information passes by the laser-lens system in a constant speed of 1.3 m/s) The innermost first track The outermost final track

Example: CD Player (continue) The maximum playing time of a standard music CD is 74 minutes and 33 seconds. How many revolutions does the disc make during that times? Assuming the angular velocity is decreasing steadily The angular acceleration What’s the total length of track moves past the objective lens during this time?

訓練時為等速運轉,故太空人所感受到的為法線加速度 Example: 離心機 為訓練太空人能夠忍受發射脫離地球引力範圍時所需承受的加速度,太空人訓練中心多以離心機來模擬。若離心機中太空人訓練位置距旋轉中心15公尺,(一)需多大的角速度方能使太空人感受到約11倍的重力加速度? 訓練時為等速運轉,故太空人所感受到的為法線加速度

(二)在此狀況下,於訓練艙中之太空人的線性速度約為多少? Example: 離心機 (續) (二)在此狀況下,於訓練艙中之太空人的線性速度約為多少? 線性速度與角速度的關係為 (三)若此訓練機於兩分鐘的時間內,等加速的由靜止到(一)中結果的速度,問其切線加速度約為多少? 切線加速度為

轉動運動的動能 線性運動的動能形式為 mv2/2而物體的總動能為各個質點動能的線性相加總和 h 線性運動的動能形式為 mv2/2而物體的總動能為各個質點動能的線性相加總和 所以 Ki = miv2/2  K =  Ki =  miv2/2 =  mir2w2/2 與線性動能的形式相比較 mv2/2 將之表達成轉動運動的參數形式可得 K = { mir2} w2/2 = I w2/2 一新的物理量於轉動運動中扮演著線性運動中質量的角色 Moment of Inertia I =  mir2 = r2dm

在預期的效率之下,此儲存能量能使一小型汽車行駛250miles Example: Flywheel 利用現代科技技術,我們能夠建造一先將能量以轉動動能的形式儲存在飛輪系統,然後用以驅動行駛的汽車。假設一圓柱形飛輪的總質量為75kg,半徑為25cm。若該飛輪以85000 rev / min的速度旋轉,問其儲存多少能量? 在預期的效率之下,此儲存能量能使一小型汽車行駛250miles

轉動慣量的計算 物體的轉動慣量並非為一常數,而是與轉動軸的位置與方向有關 Example: Uniform Solid Cylinder Solution 物體的轉動慣量並非為一常數,而是與轉動軸的位置與方向有關

Some Rotational Inertias Solid Cylinder I = MR2/2 Solid Cylinder I = MR2/4 +ML2 /12 Solid Sphere I = 2MR2/5 Thin Sphere I = 2MR2/3 I = M (a2 +b2) /12

平行軸定理 若旋轉軸通過物體質心的轉動慣量為已知,則平行於此方向的任何轉動慣量為 ICM 為通過物體質心的轉動慣量 M 為物體的總質量 D 為兩轉動軸之間的距離

平行軸定理(證明) 令轉動軸方向為Z軸,且定質心所在的XY平面以質心為原點,而另一轉軸通過此平面於(a,b)

Example: 一均勻長棒(如右圖所示)的總質量為M,若旋轉軸垂直於棒長方向且通過質心,求其轉動慣量? 若旋轉軸方向不變,但移至長棒的一端,求其轉動慣量為何? 或由平行軸定理

轉動運動時動能的改變 dW = Fx dx + Fy dy = [ x Fy -y Fx ] dq = rF dq = t dq 令轉軸的方向為Z軸,轉動運動時由功的定義 dW = F  dr = Fx dx + Fy dy q dq dr 將直角座標位移量轉換為轉動運動的新參數q dr = r dq, dx = -r sinq dq = -ydq dy = r cosq dq = xdq dW = Fx dx + Fy dy = [ x Fy -y Fx ] dq = rF dq = t dq dW = Fx dx + Fy dy = [ x Fy -y Fx ] dq = rF dq = t dq t= rF扮演類似於改變線性運動動能時,力所扮演的角色。我們稱之為力矩(torque)

力矩 由力矩的定義,其方向可由右手定則決定,而大小為 式子中d為r於垂直於F方向上的分量,俗稱為力臂 力矩為一向量,故總力矩為各個力矩之向量和 注意事項: (一)力矩的單位雖與功一樣,但卻為完全不一樣的觀念。(二)參考轉軸需先確定之後,力矩的定義方有意義。

Example: (一)求淨力矩 (二)若F1=5.0N ,R1=1.0m ,F2=15.0N, R2=0.5m,其旋轉方向為? 淨力矩為正值,由右手定則,其旋轉方向為逆時鐘旋轉

力矩與角加速度 一物體的旋轉如右圖所示。對每一個微小體積元而言,皆滿足 該體積元所受的力矩為 雖然物體中每一體積元的切線加速度不一樣,但是其角加速度卻都一樣(對剛體而言)

力矩為 角加速度為 端點切線加速度為 為何端點切線加速度會大於g ?? 固定點 Example: Rotating Rod 一質量為m長度為L的均勻長棒,固定一端而另一端則可自由轉動。問於水平靜止位置釋放時,其起始角加速度與自由端切線加速度為何? mg 力矩為 角加速度為 端點切線加速度為 HW:可否比自由落替更快? 為何端點切線加速度會大於g ??

阿特伍德機如右圖所示。若繩子的質量可忽略,兩滑輪的半徑為R,轉動慣量為I。求加速度? Example:Atwood’s Machine 阿特伍德機如右圖所示。若繩子的質量可忽略,兩滑輪的半徑為R,轉動慣量為I。求加速度? 線性運動滿足牛頓定律 轉動運動滿足牛頓定律 將(1)(2)式結果代入

轉動運動時動能的改變(續) 由於外力作用於物體使之旋轉所作的功為 依此定義,功與轉動動能的關係為 此關係式為前述定義之總結

前述例題中的長棒自水平靜止位置釋放時,問於最低點時該棒的角速度為何? 固定點 Example: Rotating Rod(續) 前述例題中的長棒自水平靜止位置釋放時,問於最低點時該棒的角速度為何? mg 重力位能轉變為轉動動能

Example: 一系統如右圖所示。求物體運動速度與下滑高度的關係 重力位能轉變為轉動動能