9. Systems of Particles 多質點系统

Slides:



Advertisements
Similar presentations
Chapter 3 動力學 DYNAMICS 1.動力學 研究力與運動物理量的關係。 運動學相關物理量 動力學 力相關物理量 力 動量 動能
Advertisements

第二章 运动的守恒量和守恒定律 §2-1 质点系的内力和外力 质心 质心运动定理 §2-2 动量定理 动量守恒定律
Section A Period 1 (1a-2d) Unit 8. 1.There be “ 某处有 ( 存在 ) 某人或某物 ” 结构 :There be (is, are, was, were)+ 名词 + 地点状语。 There are forty-eight students in our.
--- Chapter 10 Convection ---
Do you have a soccer ball?
English Riddles and Brainteaser. What do you call a deer 鹿 with no eyes? No-eyed deer (No idea.)
(复习课) 光学复习.
自然運動 伽利略在運動學上的成就,奠定了牛頓動力學的基礎。伽利略成功的描述地球上物體的拋物運動,其主要基於兩個基本概念:
沐阳老年社区.
指導教授:許子衡 教授 報告學生:翁偉傑 Qiangyuan Yu , Geert Heijenk
普通物理 General Physics 5 – Newton's Law of Motion
广义相对论课堂5 引力红移/时间膨胀检验和推论
3. Motion in 2- & 3-D 二及三維運動 Vectors 向量
D. Halliday, R. Resnick, and J. Walker
微積分網路教學課程 應用統計學系 周 章.
4. Newton's Laws 牛頓定律 The Wrong Question 問錯題
普通物理 General Physics 28 - Magnetic Force
普通物理 General Physics 15 - Simple Harmonic Motion
Short Version : 20. Electric Charge, Force, & Fields 短版: 20. 電荷,力,和場
普通物理 General Physics 2 – Straight Line Motion
普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo
普通物理 General Physics 8 – Conservation of Energy
第二章 共轴球面系统的物像关系 Chapter 2: Object-image relations of coaxial spheric system.
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
附加内容 “AS”用法小结(1).
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
普通物理 General Physics 9 - Center of Mass and Momentum
機械波 Mechanical Waves Mechanical wave is a disturbance that travels through some material or substance called the medium for wave. Transverse wave is the.
普通物理 General Physics 10 - Rotational Motion I
普通物理 General Physics 7 – Work-Kinetic Energy Theorem
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
普通物理 General Physics 22 - Finding the Electric Field-I
Short Version : 5. Newton's Laws Applications 短版: 5. 牛頓定律的應用
Chapter 8 Thermodynamics of High-Speed Gas Flow (第8章 气体和蒸气的流动)
First-Law Analysis for a Control Volume
Neutron Stars and Black Holes 中子星和黑洞
句子成分的省略(1).
Short Version : 9. Systems of Particles 短版: 9.多質點系统
Chp.4 The Discount Factor
普通物理 General Physics 21 - Coulomb's Law
Version Control System Based DSNs
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
Mechanics Exercise Class Ⅰ
Summary for Chapters 24 摘要: 24章
科學遊戲實作_SM的魔法教室 私立協同中學物理教師 何世明.
Common Qs Regarding Earnings
关联词 Writing.
動量與能量.
Chp.4 The Discount Factor
12. Static Equilibrium 靜力平衡
Part One: Mechanics 卷一:力學
Nucleon EM form factors in a quark-gluon core model
磁共振原理的临床应用.
Mechanics Exercise Class Ⅱ
遊戲設計 Special Effects.
虚拟语气(1).
English article read(英文文章閱讀)
名词从句(4) (复习课).
动词不定式(6).
汽車的保險桿應如何設計? 若有兩款不同的設計,一為十分堅固的鋼鐵設計造型,另一為多槽式的塑膠設計。其可能的優缺點為何?
12. Static Equilibrium 靜力平衡
1 布洛赫定理与布洛赫波 2 近自由电子近似方法 3 紧束缚近似方法 4 其他方法 5 能带电子的态密度 6 布洛赫电子的准经典运动
句子成分的省略(3).
定语从句(4).
Summary : 4. Newton's Laws 摘要: 4. 牛頓定律
Principle and application of optical information technology
Presentation transcript:

9. Systems of Particles 多質點系统 Center of Mass 質心 Momentum 動量 Kinetic Energy of a System 一個系统的動能 Collisions 碰撞 Totally Inelastic Collisions 完全非彈性碰撞 Elastic Collisions 彈性碰撞

Ans. His center of mass (CM) 答: 他的質心 As the skier flies through the air, 當滑雪人在空中飛過時, most parts of his body follow complex trajectories. 他身體大部份的軌跡都很複雜。 But one special point follows a parabola. 可是一個特別的點走的是一條拋物線。 What’s that point, and why is it special? 那一點是甚麽,它為何特別? Ans. His center of mass (CM) 答: 他的質心 Rigid body: Relative particle positions fixed. 剛體: 質點間的距離固定。

9.1. Center of Mass 質心 N particles 質點 :  = total mass 總質量 = Center of mass 質心 = mass-weighted average position 質量加權的平均位置 with 3rd law  第三定律 Cartesian coordinates: 卡氏座標 Extension: “particle” i may stand for an extended object with cm at ri . 延伸: “質點” i 可代表一個 CM 在 ri 的延綿物體。

Example 9.1. Weightlifting 舉重 Find the CM of the barbell consisting of 50-kg & 80-kg weights at opposite ends of a 1.5 m long bar of negligible weight. 一槓鈴的槓心長1.5 m ,重量可以忽略。在槓心兩端各掛 50-kg 和 80-kg 槓片。 求槓鈴的質心。 CM is closer to the heavier mass. 質心離重一點的質量較近。

Example 9.2. Space Station 太空站 A space station consists of 3 modules arranged in an equilateral triangle, connected by struts of length L & negligible mass. 一太空站由三個模組,以質量可忽略,長度為 L 的支柱,連成一等邊三角形。 2 modules have mass m, the other 2m. 兩模組的質量為 m,另一個為 2m 。 Find the CM. 求質心。 Coord origin at m2 = 2m & y points downward. 座標原點在 m2 = 2m 且 y 朝下。 2: 2m x 30 L CM obtainable by symmetry 可以對稱性導得 1: m 3:m y

Continuous Distributions of Matter 物質的連續分佈 Discrete collection 離散組合 : Continuous distribution 連續分佈: 原點隨便 Let  be the density of the matter. 設  為物質的密度

Example 9.3. Aircraft Wing 飛機翼 A supersonic aircraft wing is an isosceles triangle of length L, width w, and negligible thickness. 一架超音速飛機的翼是一個等腰三角形,長 L ,寬 w ,厚度則可忽略。 It has mass M, distributed uniformly. 它的質量 m 分佈均勻。 Where’s its CM? 它的質心在哪? Density of wing 翼的密度 = . Coord origin at leftmost tip of wing. 座標原點在翼的最左端 By symmetry 由對稱性, y dx h w x L

y b dy w/2 w x w/2 L

CMfuselage 機身 CMplane 飛機 CMwing 機翼 A high jumper clears the bar, but his CM doesn’t. 一個跳高者躍過了橫桿,他的質心卻沒有。

Got it 懂嗎? 9.1. A thick wire is bent into a semicircle. 一條粗纜被扳成半圓形。 Which of the points is the CM? 那一點是質心?

Example 9.4. Circus Train 馬戲班火車 Jumbo, a 4.8-t elephant, is standing near one end of a 15-t railcar, 一頭 4.8-t 的大象,阿大,站在一部 15-t 的火車廂的一端。 which is at rest on a frictionless horizontal track. 火車廂停在一條無摩擦的水平鐵軌上 Jumbo walks 19 m toward the other end of the car. 阿大朝車廂的另一端走 19m 。 How far does the car move? 車廂移動多遠? 1 t = 1 tonne 公噸 = 1000 kg Car not moving xcm  Car moved 19+xJi  Jumbo walks, but the center of mass doesn’t move (Fext = 0 ). 阿大有在走,可是質心不動 ( Fext = 0 ) 。

9.2. Momentum 動量 Total momentum: 總動量: M constant  不變

Conservation of Momentum 動量守恆  Conservation of Momentum 動量守恆 : Total momentum of a system is a constant if there is no net external force. 如果沒有淨外力,一個系統的總動量是個常數。

GOT IT 懂嗎! 9.2. K.E. is not conserved. 動能沒有守恆。 A 500-g fireworks rocket is moving with velocity v = 60 j m/s at the instant it explodes. 一枚 500-g 的煙花火箭在爆炸當時以 v = 60 j m/s 的速度移動。 If you were to add the momentum vectors of all its fragments just after the explosion, 如果你把它所有碎片在爆炸後一剎那的動量向量都加起來, what would you get? 你會得甚麼? K.E. is not conserved. 動能沒有守恆。 Emech = K.E. + P.E. grav is not conserved 沒有守恆. Etot = Emech + Uchem is conserved 守恆.

Conceptual Example 9.1. Kayaking 划獨木舟 Jess (mass 53 kg) & Nick (mass 72 kg) sit in a 26-kg kayak at rest on frictionless water. 潔西 (質量53 kg) 和尼克 (質量 72 kg) 坐在一條停在無摩擦的水上, 26-kg 的獨木舟上。 Jess toss a 17-kg pack, giving it a horizontal speed of 3.1 m/s relative to the water. 潔西拋出一個17-kg 的背包,給了它相對於水 3.1 m/s 的水平速率。 What’s the kayak’s speed after Nick catches it? 在尼克接住它之後,獨木舟的速率為何? Why can you answer without doing any calculations ? 為甚麼你不用計算就可以回答 ? Initially, total p = 0. 開始時,總 p = 0. frictionless water  p conserved 水無摩擦  p 守恆 After Nick catches it , total p = 0. 尼克接住它之後,總 p = 0. Kayak speed = 0 獨木舟的速率 = 0. Simple application of the conservation law. 祇是守恆定律的簡單應用。

Making the Connection 連起來 Jess (mass 53 kg) & Nick (mass 72 kg) sit in a 26-kg kayak at rest on frictionless water. 潔西 (質量53 kg) 和尼克 (質量 72 kg) 坐在一條停在無摩擦的水上, 26-kg 的獨木舟上。 Jess toss a 17-kg pack, giving it a horizontal speed of 3.1 m/s relative to the water. 潔西拋出一個17-kg 的背包,給了它相對於水 3.1 m/s 的水平速率。 What’s the kayak’s speed while the pack is in the air & after Nick catches it? 當背包在空中,和在尼克接住它之後,獨木舟的速率為何? Initially 開始時 While pack is in air 當背包在空中: Note: Emech not conserved 注: Emech 不守恆

Example 9.5. Radioactive Decay 放射性衰變 A lithium-5 ( 5Li ) nucleus is moving at 1.6 Mm/s when it decays into 一個鋰-5 ( 5Li ) 原子核以 1.6 Mm/s 移動時衰變成 a proton ( 1H, or p ) & an alpha particle ( 4He, or  ). [ Superscripts denote mass in AMU ] 一個質子( 1H, 或 p ) 和一個阿爾發粒子( 4He,或  ). [上標表示以 AMU為單位的質量]  is detected moving at 1.4 Mm/s at 33 to the original velocity of 5Li. 茲測得  以 1.4 Mm/s 在與 5Li 原來速度成 33 的方向移動。 What are the magnitude & direction of p’s velocity? p 的速度的大小和方向為何? Before decay: 衰變之前 After decay: 衰變之後

Example 9.6. Fighting a Fire 救火 A firefighter directs a stream of water to break the window of a burning building. 一名消防員想用水柱把一幢着火房子的窗門打破。 The hose delivers water at a rate of 45 kg/s, hitting the window horizontally at 32 m/s. 水管的出水速率為 45 kg/s ,水則沿水平方向以32 m/s 打到窗門。 After hitting the window, the water drops vertically. 打到窗門後,水朝下畢直掉落。 What horizontal force does the water exert on the window? 水在水平方向施於窗門的力為何? Momentum transfer to a plane  stream: 在  水流的平面上,動量轉移為: = Rate of momentum transfer to window 動量轉移至窗門的速率 = force exerted by water on window 水施於窗門的力

GOT IT 懂嗎 ? 9.3. Two skaters toss a basketball back & forth on frictionless ice. 兩名溜冰的人在無磨擦的冰上把一個籃球互相投擲。 Which of the following does not change: 下面那一項不會改變: momentum of individual skater. 個別溜冰人的動量 momentum of basketball. 籃球的動量 momentum of the system consisting of one skater & the basketball. 包含一個溜冰人和籃球的系统的動量 momentum of the system consisting of both skaters & the basketball. 包含兩個溜冰人和籃球的系统的動量

Application: Rockets 應用:火箭 High pressure gas pushes equally in opposite directions, & this “rocket” goes nowhere. 高壓氣體在相反方向的推力都相等,這“火箭”那裏都不能去。 Open an exhaust port …. 打開一個排氣孔… …and there’s now an unbalanced force on the front of the rocket. …火箭前端便有一個未被抵消掉的力 Thrust: 推力

9.3. Kinetic Energy of a System 一個系统的動能

9.4. Collisions 碰撞 Examples of collision 碰撞的例子: Balls on pool table. 撞球桌上的撞球。 tennis rackets against balls. 網球拍碰到網球。 bat against baseball. 棒球棒碰到棒球。 asteroid against planet. 小行星撞上行星。 particles in accelerators. 加速器內的粒子。 galaxies 銀河群 spacecraft against planet 太空船遭遇行星 ( gravity slingshot 重力彈弓 ) Characteristics of collision 碰撞的特徵 : Duration: brief. 過程:短暫 Effect: intense 効果:激烈 (all other external forces negligible ) 其他的外力全都可以忽略

Momentum in Collisions 碰撞時的動量 External forces negligible  Total momentum conserved 外力都可以忽略  總動量守恆 For an individual particle 單一粒子 t = collision time 碰撞時間 impulse 衝力 More accurately,更精確的說法 Same size 同樣大小 Average 平均值 Crash test 撞車測試

Energy in Collisions 碰撞時的能量 Elastic collision: K conserved. 彈性碰撞: K 守恆 。 Inelastic collision: K not conserved. 非彈性碰撞: K 不守恆 。 Bouncing ball: inelastic collision between ball & ground. 彈跳中的球:球與地非彈性碰撞。

GOT IT 懂嗎? 9.4. Which of the following qualifies as a collision 以下何者可稱為碰撞? Of the collisions, which are nearly elastic & which inelastic? 碰撞之中,那些差不多是彈性的,那些是非彈性的? a basketball rebounds off the backboard. 一個籃球從籃板反彈出來 two magnets approach, their north poles facing; they repel & reverse direction without touching. 兩個磁鐵的北極互相靠近,它們互相排斥,沒有接觸就掉頭退開。 a basket ball flies through the air on a parabolic trajectory. 一個籃球在空中沿拋物線軌跡飛行。 a truck crushed a parked car & the two slide off together. 一輛貨車把一輛停好的汽車壓扁,然後兩者一齊滑走。 a snowball splats against a tree, leaving a lump of snow adhering to the bark. 一枚雪球碰上一棵樹,留下一團雪附在樹皮上。 elastic彈性 elastic 彈性 inelastic非彈性 inelastic非彈性

9.5. Totally Inelastic Collisions 完全非彈性碰撞 Totally inelastic collision: colliding objects stick together 完全非彈性碰撞:相撞的物體粘在一起。 maximum energy loss consistent with momentum conservation. 動量守恆所容許的最大能量消耗。

Example 9.7. Hockey 冰上曲棍球 A Styrofoam chest at rest on frictionless ice is loaded with sand to give it a mass of 6.4 kg. 一個保麗龍盒子放在無摩擦的冰上,盒內的砂子使它的質量達到 6.4 kg。 A 160-g puck strikes & gets embedded in the chest, which moves off at 1.2 m/s. 一枚160-g 的球餅撞來,嵌在盒內,並使它以 1.2 m/s 走動。 What is the puck’s speed? 球餅的速率為何?

Example 9.8. Fusion 核融 Consider a fusion reaction of 2 deuterium nuclei 2H + 2H  4He . 茲有二氘核子進行核融反應 2H + 2H  4He Initially, one of the 2H is moving at 3.5 Mm/s, the other at 1.8 Mm/s at a 64 angle to the 1st. 開始時,一個 2H 以 3.5 Mm/s 移動,另一個則以 1.8 Mm/s 與第一個成 64 移動。 Find the velocity of the Helium nucleus. 求氦核子的速度。

Example 9.9. Ballistic Pendulum 彈道單擺 The ballistic pendulum measures the speeds of fast-moving objects. 彈道單擺可用來測量快速物體的速率。 A bullet of mass m strikes a block of mass M and embeds itself in the latter. 一質量為 m 的子彈擊中並嵌入一質量為 M 的質塊。 The block swings upward to a vertical distance of h. 質塊上擺高度為 h。 Find the bullet’s speed. 求子彈的速率。  Caution小心: ( heat is generated when bullet strikes block ) 子彈撞擊質塊時產生熱量

9.6. Elastic Collisions 彈性碰撞 Momentum conservation: 動量守恆 Energy conservation: 能量守恆 Implicit assumption: particles have no interaction when they are in the initial or final states. ( Ei = Ki ) 不明文假定:在始和終態時粒子間無作用。 ( Ei = Ki ) 2-D case 二維系统 : number of unknowns 未知數個數 = 2  2 = 4 ( final state 終態 : v1fx , v1fy , v2fx , v2fy ) number of equations 方程式個數 = 2 +1 = 3  1 more conditions needed. 欠一個條件方程。 3-D case 三維系统 : number of unknowns 未知數個數 = 3  2 = 6 ( final state 終態 : v1fx , v1fy , v1fz , v2fx , v2fy , v2fz ) number of equations 方程式個數 = 3 +1 = 4  2 more conditions needed. 欠二個條件方程。

Elastic Collisions in 1-D 一維彈性碰撞 1-D collision 一維碰撞 1-D case 一維系统: number of unknowns 未知數個數 = 1  2 = 2 ( v1f , v2f ) number of equations 方程式個數 = 1 +1 = 2  unique solution. 解答獨一無二。 This is a 2-D collision 這是二維碰撞 

  (a) m1 << m2 :  (b) m1 = m2 :  (c) m1 >> m2 : 

Example 9.10. Nuclear Engineering 核子工程 Moderator slows neutrons to induce fission. 減速子使中子慢下來以誘發核分裂。 A common moderator is heavy water ( D2O ). 常用的減速子是重水( D2O ) 。 Find the fraction of a neutron’s kinetic energy that’s transferred to an initially stationary D in a head-on elastic collision. 求在一迎頭碰撞中,中子的動能有幾分會轉移給一個本來是靜止的 D 。

GOT IT 懂嗎? 9.5. One ball is at rest on a level floor. 一個球停在一片水平地板上。 Another ball collides elastically with it & they move off in the same direction separately. 另一個球與它彈性碰撞,之後兩者分別朝同一方向走動。 What can you conclude about the masses of the balls? 你對這些球的質量有何結論? 1st one is lighter. 第一個較輕。

Elastic Collision in 2-D 二維彈性碰撞 Impact parameter 撞擊參數 b : additional info necessary to fix the collision outcome. 要决定碰撞結果所需的額外資訊。

Example 9.11. Croquet 槌球 A croquet ball strikes a stationary one of equal mass. 一個槌球撞上另一個和它質量相同的靜止槌球。 The collision is elastic & the incident ball goes off 30 to its original direction. 碰撞是彈性的,而且入射球後來的方向與原來的成 30 。 In what direction does the other ball move? 另一球往那個方向走? p cons 守恆: E cons 守恆: 

Center of Mass Frame 質心框 碰撞點