Chapter 8 異質性.

Slides:



Advertisements
Similar presentations
Chap 3 微分的應用. 第三章 3.1 區間上的極值 3.2 Rolle 定理和均值定理 3.3 函數的遞增遞減以及一階導數的判定 3.4 凹面性和二階導數判定 3.5 無限遠處的極限 3.6 曲線繪圖概要 3.7 最佳化的問題 3.8 牛頓法 3.9 微分.
Advertisements

工職數學 第四冊 第一章 導 數 1 - 1 函數的極限與連續 1 - 2 導數及其基本性質 1 - 3 微分公式 1 - 4 高階導函數.
©2009 陳欣得 統計學 —e1 微積分基本概念 1 第 e 章 微積分基本概念 e.1 基本函數的性質 02 e.2 微分基本公式 08 e.3 積分基本公式 18 e.4 多重微分與多重積分 25 e.5 微積分在統計上的應用 32.
不定積分 不定積分的概念 不定積分的定義 16 不定積分的概念 16.1 不定積分的概念 以下是一些常用的積分公式。
第 6 章 複迴歸之一.
單元九:單因子變異數分析.
Chapter 2 簡單迴歸模型.
資料分析:相關和迴歸 第十八章 「行銷研究人員必須持續檢視消費者認知和最終 購買決策之間的關係,因此,相關和迴歸技術為行
景氣循環 景氣循環 美國景氣循環變化歷程 景氣循環面面觀 景氣循環分析的介紹 總體經濟學 chapter 8 景氣循環.
應用統計理論 編著:劉正夫教授 Reference:1) Wonnacott and Wonnacott. Introductory
Keller: Stats for Mgmt & Econ, 7th Ed 簡單線性迴歸和相關分析
17 類別資料的分析  學習目的.
第四章 數列與級數 4-1 等差數列與級數 4-2 等比數列與級數 4-3 無窮等比級數 下一頁 總目錄.
5.1 自然對數函數:微分 5.2 自然對數函數:積分 5.3 反函數 5.4 指數函數:微分與積分 5.5 一般底數的指數函數和應用 5.6 反三角函數:微分 5.7 反三角函數:積分 5.8 雙曲函數.
迴歸分析 主講人:童超塵 實驗室網址 永久: 實驗室網址 永久: 目前:
Chapter 5 迴圈.
Chapter 2 簡單迴歸模型.
Simple Linear Regression -4
政大公企中心產業人才投資課程--企業決策分析方法--黃智聰
第三章 迴歸模式之評估與修訂.
4B冊 認識公倍數和最小公倍數 公倍數和最小公倍數的關係.
課程九 迴歸與相關2.
第 14 章 簡單迴歸.
第 7 章 複迴歸之二.
授課內容: 簡單線性迴歸模型:非線性模型、 異質變異、自我相關 政治大學行政管理碩士學程共同必修課 課程名稱:社會科學研究方法(量化分析)
以下這個謎題無法透過宮摒除法完成解題。 但可透過「區塊宮摒除法」或「行列摒除法」完成 By TTHsieh
第 14 章 簡單線性迴歸.
第 六 章 預測變數及迴歸模型的選擇.
複迴歸分析-2 Multiple Regression.
1.3 在整除性問題之應用 附加例題 3 © 文達出版 (香港 )有限公司.
第一章 直角坐標系 1-1 數系的發展.
Chapter 3 複迴歸分析: 估計.
第二次電腦實習課 說明者:吳東陽 2003/10/07.
第十四章 單因子變異數分析 14.1 前言 14.2 單因子變異數分析理論 14.3 功能視窗 14.4 範例
統計學 指導老師: 郭燿禎 Date: 2/14/12.
第 五 章 複迴歸分析.
第一章 直角坐標系 1-3 函數圖形.
學習單元:N6 數的性質 學習單位:N6-3 用短除法求H.C.F. 和 L.C.M. 學習重點 : 1. 複習因數分解法求
第一章.
Definition of Trace Function
有關於股票報酬及匯率變化對台灣醫療產業市場收益的分析
小學四年級數學科 8.最大公因數.
Chapter 9 設定和資料問題之進一步探討.
CH05. 選擇敘述.
大綱:加減法的化簡 乘除法的化簡 去括號法則 蘇奕君 台灣數位學習科技股份有限公司
微積分網路教學課程 應用統計學系 周 章.
7-2 抽樣分配(sampling distribution)
第五章 估計與信賴區間 5.1 估計概論 估計量的分配 信賴度、信賴區間與最大容忍誤差16
授課內容: 時間序列與橫斷面資料的共用 政治大學行政管理碩士學程共同必修課 課程名稱:社會科學研究方法(量化分析) 授課老師:黃智聰
政治大學東亞所選修--計量分析與中國大陸研究黃智聰
上課大綱 迴歸係數的區間估計與假設檢定 統計顯著性與經濟顯著性 迴歸模型中的點預測與區間預測 配適度分析(變異數分析)
第一章.
Chapter 4 迴歸分析. Chapter 4 迴歸分析 迴歸分析原理 迴歸分析的目的在於找出一條最能夠代表所有觀測資料(樣本點)的函數(迴歸估計式),用這個函數代表應變數和自變數之間的關係 多變量分析—管理上的應用.
t 分配 Student’s t distribution
質性資料的複迴歸分析:二元變數(虛擬變數)
第 2 章 迴歸分析的推論.
楊志強 博士 國立台北教育大學系 教育統計學 楊志強 博士 國立台北教育大學系
第十一單元 兩曲線圍出的面積.
1-1 二元一次式運算.
因數與倍數.
1-4 和角公式與差角公式 差角公式與和角公式 1 倍角公式 2 半角公式 和角公式與差角公式 page.1/23.
簡單線性迴歸模型:隨機解釋變數與時間落差分配模型
第一章 直角坐標系 1-3 函數及其圖形.
政治大學財政所與東亞所選修--應用計量分析--中國財政研究 黃智聰
解下列各一元二次方程式: (1)(x+1)2=81 x+1=9 或 x+1=-9 x=8 或 x=-10 (2)(x-5)2+3=0
17.1 相關係數 判定係數:迴歸平方和除以總平方和 相關係數 判定係數:迴歸平方和除以總平方和.
第 七 章 共線性 與 偏相關.
第三十單元 極大與極小.
第三章 比與比例式 3-1 比例式 3-2 連比例 3-3 正比與反比.
Presentation transcript:

Chapter 8 異質性

異質性 複迴歸,其同質性假設,都是假設條件於自變數之未觀測誤差u 的變異數為一常數。當解釋變數在不同值的情況下,使得u 的變異數也隨之變動,這將導致同質性假設失效;例如,在儲蓄函數中,影響儲蓄的未觀測因素的變異數會隨著收入的增加而增加,此時異質性情況就會出現。 <例,所得越高的家庭,其家庭儲蓄的差異性也會越高,因此,所得與儲蓄的分佈圖,在所得越高的地方,會越分散。> CH8 異質性 第323頁

異質性 無論是大樣本或是小樣本,要讓t 檢定、F 檢定及OLS 下的信賴區間可以使用,必須做同質性假設。在本章,我們將討論在異質性發生時可能的解決方法,我們也將指出如何檢定異質性的存在。一開始我們簡單地回顧以前在OLS 估計下出現異質性的情況。 Recall: p110, MLR.5 同質變異性 CH8 異質性 第323頁

8.1 OLS 異質性的結果 考慮線性複迴歸模型: 異質性並不會引起OLS 估計式的偏誤或不一致性,若忽略掉某個或某些重要變數才會造成偏誤或不一致性。 <P323, 在高斯馬可夫假設MLR.1 ~ MLR.4之下,可證明OLS估計式具不偏性及一致性,故MLR.5 對於不偏及一致不具影響力。> 8.1 CH8 異質性 第323頁

8.1 OLS 異質性的結果 配適度的衡量,即R2或 的解釋也不會受到異質性的影響。 <模型的配適度是指解釋的能力(Xs),而各個解釋變數不受誤差項影響。> 既然,不影響估計式的不偏、一致性及配適度,那模型具異質性會怎樣!?? 由於OLS 的標準誤是基於這些變異數,它們也就不再能夠有效的建構出信賴區間或t 統計量了。 在異質性下,普通OLS 的t 統計量並沒有t 分配,且不會因為「大樣本」就能解決這個問題。 若有異質性,則我們在高斯馬可夫的假設下用來檢定的統計量全都失效的。 <沒法做檢定啦!!> CH8 異質性 第324頁

8.2 估計OLS 後之異質穩健的推論 因為假設檢定對於任何一種計量分析都是重要的一環,且普通OLS 的推論在模型存在異質性的情況下會發生錯誤,我們必須決定是否要完全放棄OLS。 OLS 仍然是有用的。在最近20 年內,計量經濟學家已經發現如何調整標準誤、t、F 以及LM 統計量,經過調整後可以使得這些工具在模型存在有未知形式的異質性(heteroskedasticity of unknown form) 的情況下仍能發揮作用。 CH8 異質性 第324-325頁

8.2 估計OLS 後之異質穩健的推論 這個發現是非常有用且便利的,因為它使我們在進行研究時可以忽略異質性的問題而提出有用的統計量。這種方法稱為異質穩健(heteroskedasticity-robust) 程序,因為這個程序在不知道模型誤差項的變異數是否固定的情況下是能夠發揮作用的(至少在大樣本的條件下是有用的),且並不需要去判斷誤差是否真有異質性的問題。 CH8 異質性 第325頁

8.2 估計OLS 後之異質穩健的推論 使用單一獨立變數來考慮這個模型,為強調起見,我們利用i 作為下標: <不同的i 表示不同的觀察對象> yi = β0 + β1xi +ui 假定高斯馬可夫的前四項假設成立。若誤差項有異質性,則 其中我們使用2 下標i 指出誤差項的變異數依賴個別xi的值來決定。 CH8 異質性 第325頁

8.2 估計OLS 後之異質穩健的推論 將OLS 的估計式寫為: CH8 異質性 第325頁

8.2 估計OLS 後之異質穩健的推論 在MLR.1 至MLR.4 成立之下(意指,沒有同質性假設),條件於樣本中個別xi 的值, <from p57, (2.52)式> 其中 是所有xi項的總平方和。 8.2 CH8 異質性 第325頁

8.2 估計OLS 後之異質穩健的推論 對所有i 當 時,這個公式可以簡化為2/SSTx。 將 定義為y 對x 迴歸式中的OLS 殘差項,在任何異質性的形式下(包含同質性),一個有效的 估計式為: 8.3 CH8 異質性 第326頁

8.2 估計OLS 後之異質穩健的推論 一般化複迴歸模型中可以得到類似的公式 y = β0 + β1x1 + … + βkxk + u 在MLR.1 至MLR.4 成立下,可證明 的一個有效力的估計式為: 其中 定義為xj對其他獨立變數迴歸,式中的第i 個殘差,且SSRj是此迴歸式的殘差項平方和。(8.4) 式的值開根號後可以得到 的異質穩健標準誤 (heteroskedasticity-robust standard error)。 8.4 CH8 異質性 第326頁

8.2 估計OLS 後之異質穩健的推論 建立一個異質穩健t 統計量(heteroskedasticity-robust t statistic) 是非常容易的。可以藉由一般化t統計量來表示: 一般OLS 的t 統計量與異質穩健t 統計量的唯一差異在分母中標準誤的計算方式。 異質穩健F 統計量(heteroskedasticity-robust F statistic) 又可稱為異質穩健Wald 統計量。 8.5 CH8 異質性 第327.329頁

8.2 估計OLS 後之異質穩健的推論 練習 課本 p 327 範例8.1 計算異質穩健標準誤 CH8 異質性 第330頁

8.2 估計OLS 後之異質穩健的推論 總而言之,誤差項具異質性,對於估計式的不偏性、一致性及配適度皆無影響;但是~~若要再進一步從事統計相關的推論時,則因為估計式的標準誤是有偏誤的,無法做任何的檢定! 話雖如此,但是~~只要調整具偏誤的估計式標準誤,還是能從事統計推論。 問題來了:此處介紹的調整過程對同學而言:太難了!!難道,要放棄了嗎!? CH8 異質性 第330頁

計算異質穩健LM 檢定 並不是所有的迴歸軟體都可以算出穩健於異質性的F 統計量。因此,有時候有一個穩健於異質性且不需要特殊的計量軟體就可以對多個排除性限制做檢定的方法是很方便的。我們可利用任何迴歸軟體求得異質穩健LM 統計量(heteroskedasticityrobust LM statistic)。 CH8 異質性 第330頁

y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + u 計算異質穩健LM 檢定 為了計算穩健LM 統計量,我們先建立一個迴歸模型: y = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 + u 且假設我們要做H0: β4 = 0, β5 = 0的檢定。 CH8 異質性 第330頁

計算異質穩健LM 檢定 在整理之後可以得到異質穩健LM 統計量一般化的步驟如下。 異質穩健LM 統計量: 由受限制的模型中得到 。 由受限制的模型中得到 。 將欲排除的獨立變數對其他未排除的獨立變數作迴歸,如果有q個排除變數,則有q組殘差 。 CH8 異質性 第331頁

計算異質穩健LM 檢定 異質穩健LM 統計量: 得到每一個 以及 的乘積(對所有觀察值)。 得到每一個 以及 的乘積(對所有觀察值)。 作1 對 的沒有截距項的迴歸式,且異質穩健LM統計量為n-SSR1 ,其中SSR1就是這個最後迴歸的殘差平方和。在虛無假設H0下,LM 的分配接近 。 CH8 異質性 第331頁

計算異質穩健LM 檢定 練習 課本 p 331 範例8.3 異質穩健LM統計量之計算 CH8 異質性 第331頁

小結: 當模型的誤差項具有異質性時<利用OLS所求得的估計式不會影響其不偏性、一致性及配適度>: 檢定單一解釋變數是否具有解釋能力<一般而言,我們都會用 t 檢定>,需要調整估計式的變異數,以求得異質穩健標準誤,進一步計算調整後的 t 檢定統計量。 檢定二個(含)以上的變數是否同時具解釋能力<一般而言,我們都會用 F 檢定>,此時可計算異質穩健 LM 統計量<與卡方查表值比較>即可。 CH8 異質性 第331頁

8.3 異質性的檢定 當模型具異質性時,我們已經有辦法經由調整再進一步做統計推論。 但是,要如何知道模型的誤差項是否具異質性呢!? 8.3 異質性的檢定 當模型具異質性時,我們已經有辦法經由調整再進一步做統計推論。 但是,要如何知道模型的誤差項是否具異質性呢!? 利用檢定的方式,若檢定結果呈現具異質性,才需要調整後再推論;否則,便回到以前最簡單的 t 檢定及 F 檢定即可! CH8 異質性 第332-333頁

8.3 異質性的檢定 異質穩健標準誤可以在不確定迴歸模型是否存在異質性的情況下,提供一個計算為漸近t 分配之t 統計量的簡單方法。我們也可以計算出異質穩健F 以及LM 統計量。 適用這些檢定並不需要知道異質性是否存在。然而,仍然有許多理由來解釋異質性檢定方法的重要性。 第一,在古典線性迴歸模型假設下,一般t 統計量服從確切的t 分配。 第二,假如存在有異質性,則OLS 估計式將不再是最佳線性不偏估計式。 CH8 異質性 第332-333頁

8.3 異質性的檢定 由下列迴歸方程式開始 檢定過程中的虛無假說是同質性的假設MLR.5 成立 8.10 8.3 異質性的檢定 由下列迴歸方程式開始 檢定過程中的虛無假說是同質性的假設MLR.5 成立 假設誤差的條件期望值等於零,可以得到Var(u|x) = E(u2|x),故同質性的虛無假設可以寫成 8.10 8.11 CH8 異質性 第333頁

8.3 異質性的檢定 一個簡單的方法是先假設一個直線方程式: 同質性的虛無假說為: 8.12 8.3 異質性的檢定 一個簡單的方法是先假設一個直線方程式: 同質性的虛無假說為: 無法得知母體真實的誤差項,但是對於觀察值i 可以藉由OLS 殘差估計式, ,作為一個合理的母體誤差項ui的估計。因此,可估計方程式 8.12 8.13 8.14 CH8 異質性 第333-334頁

8.3 異質性的檢定 F 統計量可以寫成 8.15 CH8 異質性 第334頁

8.3 異質性的檢定 有異質性的LM 統計量為樣本大小乘上(8.14) 式的R2 : 8.3 異質性的檢定 有異質性的LM 統計量為樣本大小乘上(8.14) 式的R2 : LM 的檢定方式又可以稱為Breusch-Pagan 檢定(BP 檢定),Breusch 及Pagan (1979) 在假設誤差為常態分配下提出了一個不同形式的檢定。Koenker (1981) 則提出(8.16) 式的LM 統計量,由於較大的可應用性,所以較受歡迎。 8.16 CH8 異質性 第334-335頁

8.3 異質性的檢定 關於BP 檢定方法: 利用OLS 估計(8.10) 迴歸式並求得OLS 殘差項的平方 。 8.3 異質性的檢定 關於BP 檢定方法: 利用OLS 估計(8.10) 迴歸式並求得OLS 殘差項的平方 。 估計(8.14) 迴歸式,並求出 。 求出F 或LM 統計量及對應的p 值(前者用Fk, n-k - 1分配,後者用 分配)。若p 值夠小,亦即,其小於所選定的顯著水準,則拒絕同質性的虛無假設。 CH8 異質性 第335頁

8.3 異質性的檢定 練習 課本 p 335 範例8.4 BP檢定(檢定模型的誤差項是否具異質性) CH8 異質性 第335頁

異質性的White 檢定 同質性假設Var(u1|x1, ..., xk) = 2 是可以被u2與所有自變數xj 、自變數平方 以及所有的交叉項(xjxh, j ≠ h) 無關的較弱假設取代。 假定有一個包含三個獨立變數(k = 3) 的迴歸式,White 檢定是基於下列的估計式: 8.19 CH8 異質性 第336頁

異質性的White 檢定 異質性的White 檢定(White test for heteroskedasticity) 是用來檢定除了截距項之外,(8.19) 式所有的δj 值皆為0 的LM 統計量。因此,在這種情況有九個限制要檢定。對此假設也可用F 檢定;這二種檢定在大樣本下都是可行的。 太多獨立變數是純粹White 檢定的一個弱點:它在有限個獨立變數的模型中用了太多自由度。 可透過估計以下方程式來檢定異質性 8.20 CH8 異質性 第337頁

異質性的White 檢定 何以原本複雜的檢定估計式可以利用配適值及配適值的平方即可!? 若我們假定配適方程式為: 則平方項為<同時具有平方項及交叉項>: CH8 異質性 第337頁

異質性的White 檢定 異質性的White 檢定之特例: 用OLS 估計模型(8.10)。求得OLS 殘差 和配適值 。計算殘差平方 和配適值平方 。 做(8.20) 式的迴歸。求出迴歸的R平方值, 。 求出F 或LM 統計量,並計算p 值(前者用F2,n  3分配,而後者用 分配)。 CH8 異質性 第338頁

異質性的White 檢定 練習  課本 p 338 範例8.5 White檢定(檢定模型的誤差項是否具異質性) CH8 異質性 第338頁

小結: 當我們不知道模型是否具有異質性時,應該先檢定模型。 檢定的方法有: 確定模型具異質性時,才需要經由調整方式進行統計上的相關推論。 BP檢定 White檢定 確定模型具異質性時,才需要經由調整方式進行統計上的相關推論。 CH8 異質性 第338頁

以下小節skip 一般同學可略過8.4及8.5小節 建議: 若有同學日後確定考上研究所也決定會繼續往下念時,屆時請自行研讀此兩節,研究所的計量課程包含此部分! CH8 異質性 第338頁