信用風險與違約機率 信用風險概論 違約曝險額 衡量信用風險之機率分配類型 傳統信用評分模型 信用結構模型 信用縮減模型 違約機率模型之檢測 CAP檢測 ROC檢測 Kolmogorov-Smironov 檢測
應用 資本計提與資本配置(Regulatory/Capital allocation) 監測與信用最適化(Monitoring and Credit process optimization) 決策與定價(Decisioning and Pricing) 資產證券化(Securitization)
Instrument of measure 違約曝險額 (Exposure at Default, EAD):交易對手違約時的債權金額 違約損失率 (Loss Given Default, LGD): 發生違約時的損失比率。 違約機率值 (Probability of Default, PD):發生違約的機率值。
預期損失(EL)&非預期損失(UL) p=違約機率 (probability of default, PD) E=風險暴露額 (exposure at default, EAD) S=發生違約的損失率 (severity , loss given default, LGD) 1-S=違約的回收率 L=實際損失
Risk exposure 當期曝險額 (current exposure) 潛在曝險額 (potential exposure) 預期信用曝險額 (expected credit exposure, ECE) 最壞信用曝險額 (worst credit exposure, WCE)
衡量信用風險機率分配類型 完全價值模型 (Full Valuation Model) 唯違約模型 (Default-Only Model)
完全價值模型 又稱Mark-to-market (MTM) 模型, 係利用風險值觀念為衡量信用風險的基礎
唯違約模型 將資產的機率分配視為點二項分配,即違約 (Default) 與不違約 (Non-Default) 兩種
例7.1求預期損失與損失變異 債券 曝險額 違約機率 A B C $25 $30 $45 0.05 0.10 0.20
例7.1一機構投資人擁有100百萬的債券資產組合A、B與C,假定其曝險額固定,回復率為0,三債券發生違約的相關係數為0,其個別曝險額如(表7.3)第二欄,三債券個別或部分組合發生違約機率如(表7.4)第三欄,請問預期損失與損失變異為何 違約 損失 機率 累加機率 預期損失 損失變異 None $0 0.684 0.6840 0.0000 120.08 A $25 0.036 0.7200 0.9000 4.97 B $30 0.076 0.7960 2.2800 21.32 C $45 0.171 0.9670 7.6950 172.38 A,B $55 0.004 0.9710 0.2200 6.97 A,C $70 0.009 0.9800 0.6300 28.99 B,C $75 0.019 0.9990 1.4250 72.45 A,B,C $100 0.001 1 0.1000 7.53 總合 13.2500 434.69
Credit Scoring Models Linear probability models: Zi = Statistically unsound since the Z’s obtained are not probabilities at all. *Since superior statistical techniques are readily available, little justification for employing linear probability models.
違約機率模型介紹 傳統信用評分模型 信用評等模型 信用結構模型 信用縮減模型 Discriminant Analysis Logistic Regression Probit Model 信用評等模型 信用結構模型 信用縮減模型
線型區別模型 = 第i個借款人的第j項財務比率 = 第i個借款人違約 (Zi=1) 或不違約 (Zi=0) 變數 區別模型的目的在找出解釋變數之線性組合,依線性區別函數將被解釋變數做最佳群體區分,使區別後之群體其組間變量平方和相對於組內變異平方和為最大,以達到最佳區分效果。
Altman’s Z Score Model X1為營運資本對總資產比率 (working capital/total assets) X2為保留盈餘對總資產比率 (retained earnings/total assets) X3稅前與息前淨利對總資產比率 (EBIT/total assets) X4資本市場價值/總負債帳面價值 (market value equity/book value of total debt) X5銷貨對總資產 (sales/total assets)
Altman’s Z Score Model Z的期望值為0。其解釋變數X(為X1、X2、…、XP所組成之向量)中有X1個屬於第1群(不違約群),X2屬於第2群(違約群)。極大化下求最適的β值
Altman’s Z Score Model 其實證結果若Z大於2.99時,該借款人發生違約的可能性極低,Z小於1.81時,該借款人發生違約的可能性極高,Z介於2.99與1.81時,很難辨別該借款人發生違約的可能性。 缺點 若要了解借款人是否發生違約的程度輕淺,則無法從Z值的大小看出。所估計的Z值常常超出0與1的範圍,無法將借款人是否違約予以量化為違約機率,很難計算其預期損失及非預期損失 權重並不穩定,有可能隨時間而改變 忽略許多重要且難以量化的因素,例如借款人的信譽、借貸之間的長期關係,例如總體經濟因素等
reference Altman, E. I., ‘Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy’, Journal of Finance, Vol. 23, No. 4, 1968. Altman, E. I., and G. Sabato, ‘Effects of the New Basel Capital Accord on Bank Capital Requirements for SMEs’, Journal of Financial Services Research, Vol. 28, Nos 1/3, 2005
Logistic Model PC = 借款人的違約風險 YC= 借款人的信用品質 Xi,C= 借款人信用風險因子
Probit Model PC = 借款人的違約風險 YC= 借款人的信用品質 Xi,C= 借款人信用風險因子
Logistic (or Probit) Model 歷史資料是否擁有?資料品質是否完好? 是否考慮會計比率、公司(個人)特有變數、總體經濟變數? 如何篩選自變數? 模型預測的有效性如何量測。
信用結構模型 (Structure Credit Models) (or Option Models) Employ option pricing methods to evaluate the option to default. Used by many of the largest banks to monitor credit risk. KMV Corporation markets this model quite widely.
Option Models E A D
Value of Call and Put 舉債經營就如同公司股東持有一買權 (C)
Probability of default 假定公司的資產為隨機變數,並且隨時間 (從t=0到t=T) 而呈標準幾何布朗運動,於到期時其機率分配呈對數常態分配 當A = DT時公司發生違約,則
Assumption of Merton Constant riskless rate r Stochastic interest rates Asset-value process contain jumps
Applying Option Valuation Model Merton showed value of a risky loan F(t) = Be-it[(1/d)N(h1) +N(h2)] Written as a yield spread k(t) - i = (-1/t)ln[N(h2) +(1/d)N(h1)] where k(t) = Required yield on risky debt ln = Natural logarithm i = Risk-free rate on debt of equivalent maturity.
KMV Credit Monitor
Bond Pricing Approach or Reduce model If we know the risk premium we can infer the probability of default. Expected return equals risk free rate after accounting for probability of default. p (1+ k) = 1+ i May be generalized to loans with any maturity or to adjust for varying default recovery rates. The loan can be assessed using the inferred probabilities from comparable quality bonds.
Example of Term Structure Based Methods 假定政府一年期零息公債利率為i = 5%,某BBB等級公司債的零息債券利率為k = 5.25%,且p為公司債到期償還本金及利息的機率,則發生違約的機率 如果利率為連續複利形式
假定違約後回收率為rr 風險中立假設 連續複利
兩期以上舉例
危險率 (Hazard rates) P(t)=違約機率 (default rate) P’(t)=邊際的違約機率 (marginal default rate)
*CreditMetrics “If next year is a bad year, how much will I lose on my loans and loan portfolio?” VAR = P × 1.65 × s Neither P(position), nor s observed. Calculated using: (i)Data on borrower’s credit rating; (ii) Rating transition matrix; (iii) Recovery rates on defaulted loans; (iv) Yield spreads.
Migration matrix Rating at start of year AAA AA A BBB BB B CCC Default 9366 66 7 3 16 583 9172 225 25 10 Rating at end of year 40 694 9176 483 44 33 31 8 49 519 8926 667 46 93 6 444 8331 576 200 9 20 81 747 8418 1074 2 1 105 387 6395 4 22 98 530 2194 10000
cumulative probabilities of default Initial rating Year AAA AA A BBB BB B CCC 1 4 22 98 530 2194 2 3 11 54 244 1067 3656 7 20 96 432 1584 4652 12 33 147 624 2068 5349 5 18 50 208 838 2515 5851 6 26 71 277 1060 2923 6224 36 353 1283 3294 6512 8 9 48 125 436 1506 3631 6742 61 157 524 1724 3937 6930 10 17 77 194 617 1937 4215 7088
Corporate bond spreads above the risk-free rate (basis points) Rating 1yr 2yr 3yr 4yr 7yr 10yr 30yr AAA 38 43 48 62 72 81 92 AA 58 63 77 101 112 A 73 83 103 117 137 156 165 BBB 118 133 148 162 182 201 220 BB 275 300 325 350 375 450 575 B 500 550 600 675 725 775 950 CCC 700 750 900 1000 1100 1250 1500
Rating probability Value Loss Exp. Var AAA 2E-04 89.96 -$1.52 $0.00 AA 0.003 89.71 -1.26 0.01 A 0.06 89.29 -0.84 -$0.05 0.07 BBB 0.899 88.45 BB 0.053 85.73 2.71 $0.14 0.32 B 0.012 81.9 6.55 $0.08 0.46 CCC 0.001 79.01 9.44 $0.01 0.1 Default 61.9 26.53 $0.07 1.93 $0.25 2.96 CVaR 4.01
* Credit Risk+ Developed by Credit Suisse Financial Products. Based on insurance literature: Losses reflect frequency of event and severity of loss. Loan default is random. Loan default probabilities are independent. Appropriate for large portfolios of small loans. Modeled by a Poisson distribution.
Poisson 分配 μ為在期間h中所發生之平均違約次數 n為隨機變數,表示發生違約次數 Poisson分配的期望值與變異數均為 μ
Example 某銀行有100筆貸款,每筆貸款金額為10萬元,從歷史資料顯示平均每100筆放款有3筆倒帳,則μ=3 ,在期間h內不發生違約,及發生3次、4次違約的機率分別為 :
如果損失率為20%則: 發生3筆放款違約的損失=3×20%×100000=60000 發生4筆放款違約的損失=4×20%×100000=80000
作業 選擇一種本章所使用衡量信用風險的方法,以實際資料進行實證分析,每三人一組, 期末上台報告。