DNA是生物遗传的主要物质基础,生物机体的遗传信息以密码的形式编码在DNA分子上,表现为特定的核苷酸排列顺序,并通过DNA的复制由亲代传递给子代。在后代的生长发育过程中,遗传信息自DNA转录给RNA,然后翻译成特异的蛋白质,以执行各种生命功能,使后代表现出与亲代相似的遗传性状。 1958年,遗传信息的单向.

Slides:



Advertisements
Similar presentations
桃園縣中壢市青埔國小 宣導日期:99年12月17日 宣導者:詹德木老師 活動地點:視聽教室 愛滋病 AIDS 愛滋病 (AIDS) 防治宣導.
Advertisements

第十一章 艾滋病与人类免疫 第十一章 艾滋病与人类免疫 第一节 艾滋病发生由来和机制 第一节 艾滋病发生由来和机制 艾滋病英文全称为 (acquired immunodeficiency syndrome) 的字头 AIDS 的译称,中文名为获得性免疫缺 陷综合症,是由一种人类免疫缺陷病毒 (Human.
病毒与疾病 生技 10-1 赵桂华. 概念 生物病毒 :是一类个体微小,结构简单,只含单一 核酸 ( DNA/RNA ),必须在活细胞内寄生并以复 制方式增殖的非细胞型微生物。 生物病毒微生物 原指一种动物来源的 毒素。 “virus” 一词源于 拉丁文。 病毒能增殖、遗传和演化,因而 具 有生命最基本的特征。
什麼是愛滋病 AIDS ?  Acquired 後天性  Immune 免疫  Deficiency 缺乏  Syndrome 症候群.
第 3 节 人类遗传病. 自主学习 新 知突破 1 .识记人类遗传病的类型及特点。 2 .掌握人类遗传病的调查方法、监测、预防。 3 .了解人体基因组计划和人体健康。
血液肿瘤 金娟 在没有有效 的艾滋病疫苗 的情况下, 了解 和掌握预防艾 滋病的知识、 避免有可能导 致艾滋病的行 为是预防艾滋 病的有效方法。
狂犬病 狂犬病晚期的犬. 一、狂犬病病原 : 狂犬 病毒属于弹状病毒, 75×180nm 大小,外层为含脂 质的囊膜,内部为含核蛋白的 核心,对脂溶剂敏感,为单链 RNA 病毒。病毒主要存在于感 染动物的唾液和脑组织。 狂犬病病毒结构.
单元基础知识排查(一). 第一关:测基础 判正误 第二关:练规范 强素质 第一关:测基础 判正误 1. 病毒是一种生物,但它不是一个独立的生命系统 ( ) 2. 细胞学说揭示了细胞的统一性和多样性 ( ) 3. 原核细胞中只含有核糖体一种细胞器 ( ) 4. 蓝藻细胞不含有叶绿体,不能进行光合作用.
主题二 生命的基础 细胞的结构和功能. 细胞壁 细胞膜 细胞质 细胞核 化学组成 功能 成分 结构 基质 细胞器 结构 功能.
考点一:细胞概述(实验 ” 观察多种多样的细 胞 ” :目的要求、材料用具、方法步骤、实验现 象和结果、讨论 p25 ) 考点二: 细胞膜与细胞壁(实验 “ 验证活细胞 吸收物质的选择性 ” :目的要求、材料用具、方 法步骤、实验现象和结果、讨论) 考点三:细胞质(实验 “ 观察叶绿体的形态和分 布.
非细胞结构的生物体-病毒 通河中学 杨 洁. 病毒引起的疾病 1 、禽流感 2 、艾滋病 3 、流感 4 、非典型性肺炎 5 、脊髓灰质炎 ( 俗称小儿麻痹症 )
艾滋病及其皮肤表现 中国医学科学院皮肤病研究所 孙建方.
矿物质与畜禽营养 项目目标 理解矿物质的营养原理;能应用矿物质的营养特点,预防和治疗畜禽矿物质元素缺乏症
時間: 、22 學校:美和科技大學 講員:屏東基督教醫院-彭恩美個管師
( Genetic Information Transfer )
第十三章 DNA的复制和修复 生物体的遗传信息储存在DNA中,并通过DNA的复制由亲代传给子代。
第6章 细胞的生命历程                   第4节 细胞的癌变.
生命科学发展趋势、优先发展领域与资助思考
现代生物技术试验四 绿色荧光蛋白工程菌株的构建与表达调控 黄绍松
专题 1、4 基因工程、生物技术的安全和伦理问题 考纲内容 能力要求 命题展望 1. 基因工程的诞生 2.基因工程的原理及技术
高二生物 绪论 制作人:李 绒.
第三章 核酸的结构与功能 Chapter 3 Structure and Function of nucleic acid
§12-3 蛋白质(Protein) 一、蛋白质的结构(p378)
基础分子生物学.
第二章 动物和人体生命活动的调节 第4节 免疫调节.
一轮复习 细胞的增值.
  22. 关于生物组织中还原糖的鉴定,下列叙述正确的是
RNA的合成与加工 生物化学.
愛滋病防治教育 愛滋病防制教育 愛滋病防制教育.
病原:痘病毒属于痘病毒科、脊椎动物痘病毒亚科,该亚科现有8个属,各属成员对动物的致病作用有明显的差异,但它们构造差异不大。
第十二章 核酸的生物合成 第一节 DNA的生物合成 第二节 RNA的生物合成 第三节 反转录作用(逆转录) 一、DNA的复制方式~半保留复制
寻找生命的螺旋 深圳市育才中学 黄俊芳.
第12章、核酸 12.1 核苷酸是DNA和RNA的构件分子 12.2 DNA分子中贮存着遗传信息 12.3 DNA的碱基组成是有规律的
实验2 相差显微镜和荧光显微 镜的使用及细胞器的观察
第八章 DNA的复制和修复 第一节 DNA的复制 第二节 DNA的损伤及修复.
基因对性状的控制.
第2节 基因对性状的控制.
mRNA 转录、翻译和DNA复制的区别 细胞核 细胞核 转录 翻译 DNA复制 场所 模板 原料 信息传递 时间 产物 生长发育过程中
13-14学年度生物学科教研室总结计划 2014年2月.
必修1 分子与细胞 第二章 第三节 细 细胞溶胶 内质网 胞 核糖体 质 高尔基体 线粒体 第一课时 浙江省定海第一中学 黄晓芬.
DNA RNA Protein 8 蛋白质生物合成及加工 绪论 1 绪论 癌基因分子生物学 2 核酸的结构和性质 4 基因与基因组
复习课 细胞增殖.
细胞的癌变 英才网.
高考复习研讨交流 ——生物 西安:王澜 2014、7、16.
第十二章核酸的生物合成 ◆第一节 DNA复制 的一般规律 ◆第二节 与DNA复制有关的酶和蛋白质因子 ◆第三节 原核生物DNA复制的分子机制
DNA Biosynthesis,Replication
The biochemistry and molecular biology department of CMU
TIANGEN BIOTECH (BEIJING) CO.,LTD
第十三章 核酸降解与核苷酸代谢 核酸和核苷酸不是营养上的必需成分。首先,核苷酸很少能被细胞直接从外界摄取,而主要是利用少数几种氨基酸(甘氨酸、天冬氨酸和谷氨酰胺)、核糖-5-磷酸、CO2等作为原料从头合成的,或者利用细胞内的游离碱基或核苷进行补救合成。其次,核酸的降解也不能为细胞提供能量。
半保留模型(semioconservetive model) 全保留复制模型(conservetive model)
第三章 核酸结构、功能.
第一章 分子克隆的工具酶 工具酶:进行DNA操作经常要用到的“工具”——酶.
第三章 基因组的结构与功能.
第四章 遗传信息的的复制.
第二节 DNA复制的酶学.
第三章 基因工程制药.
Yeast two-hybrid system
基因指导蛋白质的合成 淮安市洪泽湖高级中学:王建友. 基因指导蛋白质的合成 淮安市洪泽湖高级中学:王建友.
第五章 目的基因的获得 第一节 PCR扩增获得目的基因或cDNA 第二节 基因组文库的构建与基因分离 第三节 cDNA文库的构建与筛选
第3节 细胞核——系统的控制中心 本节聚集: 1.细胞核有什么功能? 2. 细胞核的形态结构是怎样的?
第二节 核酸与细胞核.
找父母 A C B D
第三节 DNA生物合成过程.
遗传信息的传递与表达.
愛滋病防治教育 愛滋病防制教育 愛滋病防制教育.
园艺专业《园艺植物遗传与良种繁育》 基因的表达 平凉市电大庄浪工作站 苏显扬.
细胞的基本结构与功能 中国医科大学细胞生物学教研室 张惠丹.
談愛滋 AIDS.
生物化学 杭州职业技术学院.
第14章 DNA的损伤与修复 主讲教师:卢涛.
Presentation transcript:

DNA是生物遗传的主要物质基础,生物机体的遗传信息以密码的形式编码在DNA分子上,表现为特定的核苷酸排列顺序,并通过DNA的复制由亲代传递给子代。在后代的生长发育过程中,遗传信息自DNA转录给RNA,然后翻译成特异的蛋白质,以执行各种生命功能,使后代表现出与亲代相似的遗传性状。 1958年,遗传信息的单向 中 心 法 则 1964-1970 劳氏肉瘤病毒的 遗传方式 致癌RNA病毒 复制 病毒(复制) 转录 DNA RNA 蛋白质 翻译 逆转录

Reverse transcription 复制:亲代DNA或RNA在一系列酶的作用下,生成与亲代相同的子代DNA或RNA的过程。 转录:以DNA为模板,按照碱基配对原则将其所 含的遗传信息传给RNA,形成一条与DNA链互补的RNA的过程。 翻译:亦叫转译,以mRNA为模板,将mRNA的密码解读成蛋白质的AA顺序的过程。 逆转录:以RNA为模板,在逆转录酶的作用下,生成DNA的过程。

第一节 DNA的生物合成 一、DNA的半保留复制 定义:由亲代DNA生成子代DNA时,每个新形成的子代DNA中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式叫半保留复制 半保留复制的实验证据:1958年Meselson和Stahl用同位素15N标记大肠杆菌DNA,首先证明了DNA的半保留复制。

15N-DNA的密度大于14N-DNA的密度

DNA的半保留复制的生物学意义: DNA的半保留复制表明DNA在代谢上的稳定性,保证亲代的遗传信息稳定地传递给后代。 DNA在代谢上的稳定性并非指DNA是一种惰性物质。

二、与DNA复制有关的酶和蛋白质 原料:四种脱氧核苷三磷酸(dATP、dGTP、 dCTP、dTTP) 模板:以DNA的两条链为模板链,合成子代DNA。 引物:一小段RNA(或DNA)为引物,在大肠杆菌 中,DNA的合成需要一段RNA链作为引物。

催化因子 1.引物合成酶(引发酶):此酶以DNA为模板合成一段RNA,这段RNA作为合成DNA的引物(Primer)。实质是以DNA为模板的RNA聚合酶。 2.DNA聚合酶:以DNA为模板的DNA合成酶,其催化反应的特点 (1)以四种脱氧核苷酸三磷酸为底物;(2)反应需要有模板的指导;(3)反应需要有3-OH存在; (4)DNA链的合成方向为5   3  生物大分子合成: 底物、酶、 能量、模板 N 3 5  O OH PPP-O-CH2 OH P329需要模板的例证

(5) DNA聚合酶的反应可以利用DNA双链作为模板和引物,亦可以单链DNA作为模板和引物(P331图示) (6)DNA的体外聚合必须加入少量的DNA才能进行。DNA在提取过程中易形成切口(nick)或缺口(gap).则加入的DNA一条链作为模板而另一条链可作为引物。

原核生物中的DNA聚合酶 在大肠杆菌中发现有三种DNA聚合酶(用突变株研究其功能): ⑴ DNA聚合酶Ⅰ:单体酶,多肽链内含一个锌原子(其鳌合剂是O-二氮杂菲),多功能酶。它具有5 3 聚合酶功能(对脱氧核苷酸的选择); 3’  5’外切酶活性(对双链无作用,校对功能。但在正常聚合条件下,此活性不能作用于生长链)及5’  3’外切酶活性(双链有效,主要是对DNA损伤的修复,以及在DNA复制时RNA引物切除及其空隙的填补);在DNA链的3  形成焦磷酸解(生理意义不大);无机焦磷酸盐与dNTP之间的焦磷酸基交换。 ⑵ DNA聚合酶Ⅱ:多亚基酶,聚合作用,但聚合活力很低;具有3’  5’外切酶活性。其它生理功能尚不清楚,可能在修复紫外光引起的DNA损伤中起作用。

⑶ DNA聚合酶Ⅲ:是原核生物DNA复制的主要聚合酶,该酶由10种亚基组成,其中、、形成全酶的核心酶。具有5’3’DNA聚合酶活性( 亚基,速率高); 具有3’  5’外切酶(亚基)的校对功能,提高DNA复制的保真性;还具有5’  3’外切酶活性(单链有效,其意义未知)。 (4) DNA聚合酶IV和V:1999年发现,当DNA严重损伤时,诱导产生。

DNA聚合酶Ⅰ DNA聚合酶Ⅱ DNA聚合酶Ⅲ 亚基数目 1(单体酶) >1(多亚基酶 ) >1(多亚基酶) 5’ 3’聚合活性 + 中 + 很低 + 很高 3‘ 5’外切活性 + + + (保护DNA复制的 忠实性fidelity) 5‘ 3’外切活性 + - - DNA 复制的主要 聚合酶,还具有3’-5‘ 外切酶的校对功能,提高DNA复制的保真性 主要是对DNA损伤的修复;以及在DNA复制时切除RNA引物并填补其留下的空隙。 修复紫外光引起的DNA损伤

在真核细胞内有五种DNA聚合酶 (与细菌DNA聚合酶的性质基本相同:底物、模板、引物、方向) α β γ δ ε 定位 细胞核 细胞核 线粒体 细胞核 细胞核 3‘-5’ 外切 - - + + + 酶活性 功能 线粒体DNA 的复制 核DNA 的复制 修复 作用 引物 合成 修复 作用

但是它不能将两条游离的DNA单链连接起来。 3 .DNA连接酶(1967年发现):若双链DNA中一条链有切口,一端是3’-OH,另一端是5‘-磷酸基,连接酶可催化这两端形成磷酸二酯键,而使切口连接。 但是它不能将两条游离的DNA单链连接起来。 大肠杆菌和其它细菌的DNA连接酶要求NAD+提供能量,在高等生物和噬菌体中,则要求ATP提供能量。T4噬菌体的DNA连接酶不仅能在模板链上连接DNA和DNA链之间的切口,而且能连接无单链粘性末端的平头双链DNA。 3‘ 5‘ OH P

酶 + NAD+(ATP) 酶-AMP + 烟酰胺单核苷酸(PPi) 连接酶的反应机制: 酶 + NAD+(ATP) 酶-AMP + 烟酰胺单核苷酸(PPi) 酶-AMP + P-5‘-DNA 酶 + AMP-P-5’-DNA DNA-3’-OH + AMP-P-5’-DNA DNA-3’-O-P-5’-DNA+AMP DNA连接酶在DNA复制、损伤修复、重组等过程中起重要作用作用

拓扑异构酶І:使DNA一条链发生断裂和再连接。作用是松解负超螺旋,反应不需要能量。主要集中在活性转录区,同转录有关。 4. 拓扑异构酶:催化DNA的拓扑连环数发生变化的酶,在DNA重组修复和其他转变方面起重要作用。 除连环数不同外其它性质均相同的DNA分子称为拓扑异构体,引起拓扑异构体反应的酶称为拓扑异构酶 拓扑异构酶І:使DNA一条链发生断裂和再连接。作用是松解负超螺旋,反应不需要能量。主要集中在活性转录区,同转录有关。 拓扑异构酶Π:使DNA两条链发生断裂和再连接。当引入负超螺旋时需要由ATP提供能量,同复制有关。 二者共同控制DNA的拓扑结构。 5、解螺旋酶 (解链酶):通过水解ATP将DNA两条链打开。E.coli中的rep蛋白就是解螺旋酶,还有解螺旋酶I、II、III。每解开一对碱基需要水解2个ATP分子。

rep蛋白沿3 ’5’移动,而解螺旋酶I、II、III沿5 ’ 3’移动。 6.其它蛋白因子: ⑴单链结合蛋白(SSB-single-strand binding protein):稳定已被解开的DNA单链,阻止复性和保护单链不被核酸酶降解。 ⑵引发前体:它由多种蛋白质dnaA、dnaB、dnaC、n、n’、n’’ 和i组成。引发前体再与引发酶结合组装成引发体。 引发体可以沿模板链5’ 3’方向移动,具有识别合成起始 位点的功能,移动到一定位置上即可引发RNA引物的合成。 移动和引发均需要ATP提供能量, n’蛋白具有ATP酶的活力。引发体的移动与复制叉移动的方向相同,与冈崎片段的合成方向相反。

三、DNA的复制过程:(以大肠杆菌为例) 双链的解开 RNA引物的合成 DNA链的延伸 切除RNA引物,填补缺口,连接相邻的DNA片段

1、双链的解开 一些概念: DNA的复制有特定的起始位点,叫做复制原点。常用ori(或o)表示。许多生物的复制原点都是富含A、T的区段。 大肠杆菌染色体DNA以及真核生物的细胞器DNA为双链环状,只有一个复制原点,而真核生物染色体DNA是线性双链分子,含有许多复制起点。 从复制原点到终点,组成一个复制单位,叫复制子(基因组独立进行复制的单位)。

复制原点由DnaA蛋白识别, 在原点由DnaB蛋白(解螺旋酶)将双螺旋解开成单链状态,分别作为模板,合成其互补链(DNA双链的解开还需DNA拓扑异构酶Π 、 SSB),在原点处形成一个眼状结构,叫复制眼。 DNA复制进行时,在眼的两侧出现两个叉子状的生长点(growth point),叫复制叉。在复制叉上分布着各种与复制有关的酶和蛋白因子,它们构成的复合物称为复制体(replisome) 复制叉

复制叉 起点 延伸 领头链 随后链 3’ 5’ DNA的双向复制

(2)RNA引物的合成 引发体在复制叉上移动,沿模板链5’ 3’的方向移动,与复制叉移动的方向相同,识别合成的起始位点, DnaB蛋白活化引物合成酶。引发RNA引物的合成。领头链先引发开始合成,以原来一条DNA单链为模板(3’  5’),按5’  3’的方向合成一段RNA引物链。领头链开始合成后,随后链也开始合成其引物。引物长度约为几个至10个核苷酸,在引物的5’端含3个磷酸残基(引物酶的底物是核苷三磷酸),3’端为游离的羟基。

(3)DNA链的延伸 领头链 随后链 冈崎片段 半不连续复制 在DNA聚合酶Ш的催化下,以四种脱氧核糖核苷5’-三磷酸为底物,在RNA引物的3’端以磷酸二酯键连接上脱氧核糖核苷酸并释放出焦磷酸。DNA链的延伸同时进行领头链和随后链的合成。两条链方向相反。 领头链 随后链 冈崎片段 半不连续复制 冈崎模型

领头链—在DNA复制时,合成方向与复制叉移动的方向一致并连续合成的链。 随后链—在DNA复制时,合成方向与复制叉移动的方向相反,形成许多不连续的片段,最后再连成一条完整的DNA链。 半不连续复制—在DNA复制时,领头链是连续合成的,而随后链的合成是不连续的,这种复制方式称为半不连续复制。 发现(1968): 同位素实验,3HdT 短时间内为DNA小片段一段时间后检测到 DNA大片段。当用DNA连接酶的变异株时,检测到大量DNA片段的积累。——证明DNA复制中有小片段合成。 测定DNA小片段,远远大于合成DNA的一半。由于U替代dT,被尿嘧啶-N-糖基酶切除。 在缺少尿嘧啶-N-糖基酶的突变植株中,检测到一半3H标记出现在小片段(冈崎片段)中。

冈崎片段 在DNA复制过程中,领头链能连续合成,而随后链只能是断续的合成53 的多个短片段,这些不连续的小片段以其发现者的名字命名为冈崎片段。 冈崎片段:真核生物中100-200个核苷酸(核小体的DNA单位)。原核生物中1000-2000个核苷酸(相当于一个顺反子)。

(4)切除RNA引物,填补缺口,连接相邻的DNA片段 (复制终止) 当新形成的冈崎片段延长至一定长度,其3’-OH端遇到上一个冈崎片段时即停止合成。复制叉移动到终止区即停止复制(大肠杆菌有一个终止区)。这时会发生一系列变化:在DNA聚合酶Ⅰ催化下切除RNA引物;留下的空隙由DNA聚合酶Ⅰ催化合成一段DNA填补上;在DNA连接酶作用下,连接相邻的DNA链;修复掺入DNA链的错配碱基;以修复方式填补终止区50-100bp的空缺。这样以两条亲代DNA链为模板,各自形成一条新的DNA互补链。结果是形成了两个DNA双股螺旋分子。

四、真核生物中DNA的复制特点 1、真核生物染色体有多个复制起点,多复制眼,呈双向复制,多复制子。 2、冈崎片段长约200bp. 4、真核生物染色体在全部复制完之前起点不再重新开始复制;而在快速生长的原核中,起点可以连续发动复制。真核生物快速生长时,往往采用更多的复制起点。 5、真核生物有多种DNA聚合酶。 6、真核生物线性染色体两端有端粒结构,防止染色体间的末端连接。由端粒酶负责新合成链5RNA引物切除后的填补,亦保持端粒的一定长度。

端粒结构 3 5  复制叉 终止区 端粒酶是含RNA的逆转录酶

大肠杆菌双链环状DNA的复制(一个复制起点,双向复制) 真核细胞线状染色体DNA的复制方式(多个复制起点,双向复制) 单向滚环式复制(噬菌体X174DNA—单链环状) 3 D-环式复制方式(线粒体双链环状DNA:两条链的复制起点不同位置,且复制不同步)

六、逆转录 定义:以RNA为模板,按照RNA中的核苷酸顺序合成DNA称为逆转录,由逆转录酶催化进行。 1970年Temin和Baltimore同时分别从劳氏肉瘤病毒和小白鼠白血病病毒等致病RNA病毒中分离出逆转录酶,迄今已知的致癌RNA病毒都含有逆转录酶。 用特异抑制物(放线菌素D)能抑制致癌RNA病毒的复制,而对一般RNA病毒的复制无影响。已知放线菌素D专门抑制以DNA为模板的反应,可见致癌RNA病毒的复制过程必然涉及到DNA。所以Temin于1964年提出前病毒的假说。

逆转录酶也和DNA聚合酶一样,沿5’3’方向合成DNA,并要求短链RNA作引物。 病毒RNA的逆转录过程 (以前病毒形式引起整合到宿主细胞DNA中而使细胞恶性转化) 单链病毒RNA RNA-DNA杂交分子 双链DNA(前病毒) 逆转录酶 + RNA+ DNA- DNA+ 逆转录酶也和DNA聚合酶一样,沿5’3’方向合成DNA,并要求短链RNA作引物。 逆转录酶是多功能酶,兼有3种酶的活性: RNA指导的DNA聚合酶活性 DNA指导的DNA聚合酶活性 核糖核酸酶H的活性,专一水解RNA-DNA杂交 分子中的RNA,可沿5’3’和3’ 5’两个方向起核 酸外切酶的作用。

cDNA:几乎所有真核生物mRNA分子的3‘末端都有一段polyA,当加入寡聚dT作为引物时,mRNA就可作为模板,在逆转录酶催化下在体外合成与其互补的DNA,称为cDNA。 逆转录酶发现的理论和实践意义: 不能把“中心法则”绝对化,遗传信息也可以从RNA传递到DNA。促进了分子生物学、生物化学和病毒学的研究,为肿瘤的防治提供了新的线索。目前逆转录酶已经成为研究这些学科的工具。 1983年,发现人类免疫缺陷病毒(human immune deficience virus,HIV),感染T淋巴细胞后即杀死细胞,造成宿主机体免疫系统损伤,引起艾滋病( acquired immunodeficiency syndrome,AIDS)

七、DNA的损伤修复 DNA的损伤:DNA在复制时产生错配、病毒基因整合;某些物化因子如紫外光、电离辐射和化学诱变等,破坏DNA的双螺旋结构。从而影响DNA的复制,并使DNA的转录和翻译也跟着变化,因而表现出异常的特征(生物突变)。 若DNA的损伤或错配得不到修复,会导致DNA突变。其主要形式: 一个或几个碱基被置换 插入一个或几个碱基 一个或多个碱基对缺失 DNA的损伤修复—— 四种修复途径:光复活、切除修复、复组修复和诱导修复(亦称暗修复)。

光复活:400nm左右的光激活光复活酶,专一分解紫外光照射引起的同一条链上TT(CC CT)二聚体。(包括从单细胞生物到鸟类,而高等哺乳动物无) 切除修复:将DNA分子中的受损伤部分切除,以完整的那条链为模板再重新合成。特异内切酶、DNA聚合酶、 DNA外切酶、DNA连接酶均参与。(发生在DNA复制前) 重组修复 (发生在复制后):复制时,跳过损伤部位,新链产生缺口由母链弥补,原损伤部位并没有切除但在后代逐渐稀释。P349 诱导修复:造成DNA损伤或抑制复制的处理均能引起一系列复杂的诱导效应,称为应急反应(SOS response)。此过程诱导产生切除修复和重组修复中的关键蛋白和酶,同时产生无校对功能的DNA聚合酶。所以会有2种结果:修复或变异(进化)。

DNA的合成方式: DNA的复制:以DNA为模板 合成DNA。 逆转录:以RNA为模板合成DNA。 修复合成(DNA聚合酶I、 连接酶等)