初三数学总复习《特殊四边形》 文金铭 2010年4月12.

Slides:



Advertisements
Similar presentations
下列图形中有你熟悉的图形吗? 它们有什么共同特点? AB C D F E 梯形:一组对边平行而另一 组对边不平行的四边形叫做 梯形 或:只有一组对边 平行的四边形叫做 梯形 下底 上底 腰 腰 高.
Advertisements

平行四边形的判定 新海实验中学苍梧校区 王欣.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
第十八章 平行四边形 平行四边形的性质(1).
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
同学们好! 肖溪镇竹山小学校 张齐敏.
第十八章 平行四边形 矩 形 第2课时 矩形的判定 豫灵一中 赵晓林.
22.2 平行四边形的判定 (第2课时) 石家庄市第四十一中学 冯朝.
平行四边形的判别.
在数学的天地里,重要的不是我们知道什么,
19.3 梯形(第1课时) 等腰梯形.
第十九章四边形复习设计 一、回顾与思考 二、知识点归纳 三、典型题归纳 四、思想方法归纳 沈阳市一三四中学 耿莹.
第一章 特殊的平行四边形 复习课.
习题课 阶段方法技巧训练(一) 专训2 切线的判定和性质 的四种应用类型.
特殊平行四边形复习 欢迎走进我们的课堂 奔牛初中 文金铭.
特殊的平行四边形复习.
平行四边形的性质.
§ 菱形的定义、性质 菱形 本资料来自于资源最齐全的21世纪教育网
12.3 角的平分线的性质 (第2课时).
鄞州区智慧教育“空中课堂” 新初三年级(A)班 第一讲 多边形与平行四边形 兴宁中学 李曙锋 QQ:
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
如图,平行四边形ABCD,AC、BD相交于点O,过点O的EF与AD、BC交于E、F两点,OE与OF,相等吗?为什么?
第21讲 矩形、菱形、正方形 考点知识精讲 中考典例精析 举一反三 考点训练.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
本节内容 平行线的性质 4.3.
19.1.2平行四边形的判定 傅家中学 边宗国.
知识回顾: 1. 平行四边形具有哪些性质? 平行四边形的性质: 1、边:平行四边形对边平行且相等。 2、角:平行四边形对角相等,邻角互补。
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
§ 平行四边形的性质⑵ 平行四边形 本资料来自于资源最齐全的21世纪教育网
1.1特殊的平行四边形 1.1菱形.
九年级数学上册·北师大 第一章 特殊平行四边形 1 菱形的性质和判定.
第六章 特殊的平行四边形 6.1 矩形(1).
初二上复习综合题集.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
§ 矩形的定义、性质 矩形 本资料来自于资源最齐全的21世纪教育网
正方形 ——计成保.
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
D B A C 菱形的判定 苏州学府中学 金鑫.
八年级期中数学试卷 学年下学期.
6.2菱形(2).
菱 形 (1) 三菱越野汽车欣赏.
一个直角三角形的成长经历.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
冀教版八年级下册 22、2平行四边形的判定(2) 东城中学 孙雅力.
9.5 三角形的中位线.
正 方 形.
2.6 直角三角形(1).
数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。      ——毕达哥拉斯
欢迎各位老师莅临指导! 海南华侨中学 叶 敏.
九年级数学(上) 第一章 特殊平行四边形 2.正方形的性质与判定—判定.
18.2 特殊的平行四边形 矩形(1).
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
13.3 等腰三角形 (第3课时).
人教版数学教材八年级下 19.1平行四边形2-1.
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
空间平面与平面的 位置关系.
18.2特殊的平行四边形 菱形的性质 皆山中学 梁艳华.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
高中数学必修 平面向量的基本定理.
6.3正方形. 6.3正方形 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。 1. 正方形的定义 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
矩形 有一个角是直角的平行四边形 灵宝市川口一中南肖丽.
19.1平行四边形的性质⑵.
19.2 特殊的平行四边形 矩形.
第19章 四边形 小结和复习.
5.1 相交线 (5.1.2 垂线).
正方形的性质.
Presentation transcript:

初三数学总复习《特殊四边形》 文金铭 2010年4月12

一、四边形的分类及转化 矩形 一个角是 邻边相等 直角 两组对边平行 平行四边形 正方形 邻边相等 一个角是 菱形 直角 任意四边形 一组对边平行 另一组对边不平行 等腰梯形 两腰相等 梯形 一个角是 直角 直角梯形

一、几种特殊四边形的性质: 边 角 对角线 对称性 项目 四边形 对角相等 邻角互补 中心对称图形 平行且相等 互相平分 中心对称图形 平行四边形 矩形 菱形 正方形 对角相等 邻角互补 中心对称图形 平行且相等 互相平分 中心对称图形 轴对称图形 四个角 都是直角 平行且相等 互相平分且相等 平行 且四边相等 互相垂直平分,且每一条对角线平分一组对角 中心对称图形 轴对称图形 对角相等 邻角互补 平行 且四边相等 四个角 都是直角 中心对称图形 轴对称图形 互相垂直平分且相等,每一条对角线平分一组对角

二、几种特殊四边形的常用判定方法: 条 件 四边形 平行四边形 矩形 菱形 正方形 1、定义:两组对边分别平行 2、两组对边分别相等 条 件 平行四边形 矩形 菱形 正方形 1、定义:两组对边分别平行 2、两组对边分别相等 3、一组对边平行且相等 4、对角线互相平分 1、定义:有一外角是直角的平行四边形 2、三个角是直角的四边形 3、对角线相等的平行四边形 1、定义:一组邻边相等的平行四边形 2、四条边都相等的四边形 3、对角线互相垂直的平行四边形 1、定义:一组邻边相等且有一个角是直角的平行四边形 2、有一组邻边相等的矩形 3、有一个角是直角的菱形

特殊四边形间的转化条件 矩形 平行四边形 正方形 菱形 任意四边形 一个角是直角 邻边相等 对角线垂直 对角线相等 四种判定 邻边相等 一个直角 对角线相等

课前热身 1.平行四边形ABCD中,若∠A+∠C=130度,则∠D的度数是 . 2.边长为5cm的菱形,一条对角线长是6cm,则另一条对角线的长是 . 3. 若正方形的一条对角线的长为2cm,则这个正方形的面积为 . 4.两条对角线____________的四边形是正方形。 5.矩形的两条对角线的一个交角为60度,两条对角线的长度的和为8cm,则这个矩形的一条较短边为 cm. 6.平行四边形ABCD中,∠A:∠B:∠C:∠D的值可以是( ) A.1:2:3:4 B. 3:4:4:3 C. 3:3:4:4 D. 3:4:3:4 7. 下列命题中,真命题是 ( ) A.两条对角线垂直的四边形是菱形 B.对角线垂直且相等的四边形是正方形 C.两条对角线相等的四边形是矩形  D.两条对角线相等的平行四边形是矩形 8. 平行四边形ABCD中,AC,BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是菱形,那么这个条件是( ) A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD

典型例题解析 【例1】如图,在□ABCD中,点E、F在对角线AC上,且AE=CF, 请你以 F为一个端点,和图中已标有字母的某一点连成一条新线段, 猜想并证明它和图中已有的某一线段相等.(只需证明一组线段相等即可) (1) 连结_________, (2) 猜想______=________. (3) 证明:

典型例题解析 【例2】 (08乌鲁木齐)如图,在四边形ABCD中,点E是AD线段上的任意一点( E与A、D不重合),G、F、H分别是BE、BC、CE的中点. (1)证明四边形EGFH是平行四边形; (2)在(1)的条件下若 且 ,证明平行 四边形 EGFH是正方形. B G A E F H D C

典型例题解析 【例3】如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线 MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F. (1)求证:EO=FO; (2)当点O运动到何处时,四边形AECF是 矩形?并证明你的结论. A B C E F M N O

典型例题解析 【变式】如图 中点O是边AC上一个动点,过O作直线 设MN交 的平分线于点E,交的外角平分线于点F. (1)探究:线段OE与OF的数量关系并加以证明; (2)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说 明理由; (3)当点O运动到何处,且 满足什么条件时,四边形AECF是正方形? A F N D C B M E O

探索性思维 平行四边形 菱形 矩形 正方形 平行四边形 菱形 平行四边形的四边中点所成的四边形为_____________; 矩形的四边中点所成四边形为________; 菱形的四边中点所成四边形为________; 正方形的四边中点所成四边形为________; 梯形的四边中点所成四边形为_____________; 等腰梯形的四边中点所成四边形为________。 菱形 矩形 正方形 平行四边形 菱形

小结 勇 攀 高 峰 平行四边形 矩形 菱形 正方形

课后探索 1、(2009年河南)如图,在Rt△ABC中,∠ACB=90°, ∠B =60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α. (1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________ ②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________; (2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.

2、(2009年安顺)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连结BF。 求证:BD=CD; 如果AB=AC,试判断四边形AFBD的形状,并证明你的结论。

再见!