第 13 章 實驗設計與變異數分析 Part A (13.1-13.3).

Slides:



Advertisements
Similar presentations
工職數學 第四冊 第一章 導 數 1 - 1 函數的極限與連續 1 - 2 導數及其基本性質 1 - 3 微分公式 1 - 4 高階導函數.
Advertisements

單元九:單因子變異數分析.
實驗規劃--實驗因子設定, 效標選定與受測者選定
第6章 方差分析与试验设计 会计学2011级 主讲:王红娜.
應用統計理論 編著:劉正夫教授 Reference:1) Wonnacott and Wonnacott. Introductory
行銷研究 單元二 行銷研究的程序.
假設檢定之基本概念 單一母體平均數之假設檢定 假設檢定與信賴區間之相關性 兩母體平均數之假設檢定  
第 10 章 單組樣本的假設檢定.
第 9 章 假設檢定 Part A ( ).
變異數分析 (Analysis-of-Variance簡稱ANOVA)
第 9 章 假設檢定 Part A ( ).
第 8 章 一組樣本 單變項推論方法.
第五章 平均數檢定:多組樣本.
17 類別資料的分析  學習目的.
第四章 數列與級數 4-1 等差數列與級數 4-2 等比數列與級數 4-3 無窮等比級數 下一頁 總目錄.
估計.
迴歸分析 主講人:童超塵 實驗室網址 永久: 實驗室網址 永久: 目前:
單因子實驗 設計 (Single­factor experiments)
實驗計畫資料分析作業解答 何正斌 國立屏東科技大學工業管理系.
Analysis of Variance 變異數分析
兩獨立母體成功比例差- Z檢定(大樣本):說明
第六章 平均數比較 6-1 平均數比較(各種 T Test 的應用) 6-2 Means 平均數分析 6-3 單一樣本 T 檢定
Using EXCEL for ANOVA.
Analysis of Variance (一)
2-3 基本數位邏輯處理※.
4B冊 認識公倍數和最小公倍數 公倍數和最小公倍數的關係.
課程九 迴歸與相關2.
變異數分析 12.1基本概念 12.2一因子變異數分析(完全隨機化設計) 12.3數個平均數的多重比較
第 13 章 實驗設計與變異數分析.
統計學: 應用與進階 第14 章: 變異數分析.
11.1單一母體變異數的推論 前幾章中,我們以樣本變異數
統 計 學 第十章 實驗設計與變異數分析 編著 江建良 10-1 實驗法與實驗設計 10-5 多重比較 10-2 統計的實驗設計
十、變方分析 (Analysis of Variance) (Chapter 10)
第 9 章 假設檢定 Part B ( ).
指導老師: 蘇明俊 老師 組長:潘翠娥 組員:張惠雅 葉麗華
第一章 直角坐標系 1-1 數系的發展.
第8章 估計 點估計 區間估計與信賴區間.
第十四章 單因子變異數分析 14.1 前言 14.2 單因子變異數分析理論 14.3 功能視窗 14.4 範例
統計學 指導老師: 郭燿禎 Date: 2/14/12.
第十章 順序資料之假設檢定 10.1 順序資料檢定概論 10.2 符號檢定 10.3 符號秩檢定(成對樣本檢定)
第 7 章 推論方法.
估計與假設檢定.
國立台灣體育學院 體育學系暨體育研究所 高明峰
小學四年級數學科 8.最大公因數.
第一章.
CH05. 選擇敘述.
7-2 抽樣分配(sampling distribution)
第五章 估計與信賴區間 5.1 估計概論 估計量的分配 信賴度、信賴區間與最大容忍誤差16
平均數檢定與變異數分析 莊文忠 副教授 世新大學行政管理學系 SPSS統計應用分析研習(莊文忠副教授) 2019/4/27.
第一章.
Parameter Estimation and Statistical Inference
楊志強 博士 國立台北教育大學系 教育統計學 楊志強 博士 國立台北教育大學系
R教學 t檢定R指令與範例 羅琪老師.
第 12 章  變異數分析.
第四章 多组资料均数的比较 七年制医疗口腔《医学统计学》
Chapter 3 相關與變異數分析. Chapter 3 相關與變異數分析 變數的內涵 屬量變數 屬質變數 當一個變數可以量化、計算,而且其值的大小可以做有意義的比較時,則稱為屬量變數 當一個變數的內容是屬於敘述性的(如:快樂/憂鬱、男/女),則即使我們可以將其量化,這些量化之後的數值不但在邏輯上不能運算,其大小的比較也沒有意義,這種變數即稱為屬質變數.
參考書籍:林惠玲與陳正倉(2002),《應用統計學第二版》。台北:雙葉書廊有限公司。
第一章 直角坐標系 1-3 函數及其圖形.
政治大學財政所與東亞所選修--應用計量分析--中國財政研究 黃智聰
單元三:敘述統計 內容: * 統計量的計算 * 直方圖的繪製.
17.1 相關係數 判定係數:迴歸平方和除以總平方和 相關係數 判定係數:迴歸平方和除以總平方和.
第三章 比與比例式 3-1 比例式 3-2 連比例 3-3 正比與反比.
Presentation transcript:

第 13 章 實驗設計與變異數分析 Part A (13.1-13.3)

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第474頁 統計實例 柏克行銷服務公司是其產業中 最有經驗的行銷研究公司之一。 在某次研究中,柏克接受一家 公司的委託,對兒童穀片粥可 能之新口味進行評估。 我們使用變異數分析的統計方法對味道測試所得的資料進行研究。 柏克公司採用的實驗設計及後續的變異數分析,將有助於做出產品設計建議。本章中,我們將介紹如何使用這些程序。 15 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第474頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第474 - 479頁 13.1 實驗設計與變異數分析介紹 13.2 變異數分析與完全隨機設計 13.3 多重比較程序 16 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第474 - 479頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第474頁 實驗設計與變異數分析 統計研究可分為實驗型或觀察型兩類。 在實驗型研究 (experimental study) 中,我們先界定感興趣之變數,而後,控制研究中另一個或更多個其他因素,即可獲得這些因素如何影響欲探討變數之資料。 在觀察型 (observational) 或非實驗型(nonexperimental) 的研究中,我們不需控制因素。 在觀察型的研究中,要建立因果關係是有困難的。實驗型研究則較為容易。 1 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第474頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁 實驗設計介紹 因素(factor)是一個調查研究中可被實驗者選擇的變數。 處理(treatment)是每一因素的對應的方式。 實驗單位(Experimental Units)是實驗中感興趣的主題。 完全隨機設計(Completely Randomized Design)是指處理被隨機指派的一種實驗設計。 當實驗單位的性質相類似時,可以使用完全隨機的設計。 如果實驗單位的性質互異,則可以區集的方法使其同質化,稱為隨機區集設計(Randomized Block Design)。 2 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁 實驗設計介紹 (實例) Chemitech 公司面對的問題。Chemitech 公司發展出一套新的自來水過濾系統。過濾系統之零件必須向數個供應商購買,Chemitech 公司將在位於南卡羅來納州哥倫比亞市的工廠組裝這些零件。工業工程部門須負責決定此套新過濾系統的最佳組裝方法。在考慮很多可行的組裝方法後,工業工程部門選出三種較佳的方法:方法 A、方法 B 及方法 C。這些方法在組裝產品的先後次序上有所差異。Chemitech 公司的經理希望知道何種組裝方法可在一星期內生產最多的過濾系統。 3 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁 實驗設計介紹 (實例) 在 Chemitech 公司的實驗中,組裝方法被視為是一個變數或因素 (factor),因為此因素包含三種組裝方法,我們稱此實驗有三個處理 (treatment),每一個處理對應一種組裝方法。 Chemitech 公司之問題是有關定性因素 (qualitative factor) (組裝方法) 的單因素實驗 (single-factor experiment) 的實例。其他實驗可能包含多個因素,其中有些是定量因素,有些則是定性因素。 4 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁 實驗設計介紹 (實例) 這三種組裝方法 (或處理) 定義了此次 Chemitech 實驗中的三個研究母體。第一個母體是使用方法 A 的所有員工、第二個母體為使用方法 B 的所有員工、第三個母體則為使用方法 C 的所有員工。對每一個母體而言,應變數或反應變數為每星期組裝的過濾系統數目。而此次實驗的統計目的則是決定三個母體每星期之平均產量是否相等。 5 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁 實驗設計介紹 (實例) 假設我們從 Chemitech 公司的所有裝配工人中,任意選取三名員工組成一組隨機樣本,稱為實驗單位 (experimental units)。 在 Chemitech 公司之問題中,使用的實驗設計稱為完全隨機設計 (completely randomized design)。此種設計方式要求三個實驗單位 (即裝配工人) 均被隨機指派一種組裝方法 (或處理)。 例如,第二個工人被指定以方法 A 組裝,第一個工人被指定方法 B,第三個工人則採用方法 C。此例子中的隨機化 (randomization) 概念是所有實驗設計的重要原則。 6 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁 實驗設計介紹 (實例) 值得注意的是,在這個實驗中,一個處理將只含一個測量值 (即組裝的產品數量)。為獲得更多資料,我們必須重複上述實驗程序。例如,我們不要一次只隨機選取 3 名員工,而改為選取 15 名員工,然後各隨機指派 5 名員工採用某種組裝方式。既然每種組裝方式都有 5 名員工,我們即可說:重複 5 次實驗。這種重複的過程為實驗設計的另一重要原則。 圖 13.1 說明此次 Chemitech 實驗的完全隨機設計。 7 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第476頁 圖13.1 實驗設計介紹 (實例) 8 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第476頁 圖13.1

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第476頁 實驗設計介紹 (實例) 在 Chemitech 公司之例子中,我們須先指導員工如何執行所被指派的組裝方法,而後令其使用此種組裝方法開始組裝新的過濾系統。表 13.3 即每名員工在一星期內組裝的數量。下表為三種組裝方式所生產的產品數量的樣本平均數。 就上述資料而言,方法 B 的生產率似乎高於其他兩種方式。 組裝方式 平均生產數量 A 62 B 66 C 52 9 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第476頁

第13章 變異數分析與實驗設計 Part A (13.1-13.1) 第476頁 表13.1 實驗設計介紹 (實例) 10 第13章 變異數分析與實驗設計 Part A (13.1-13.1) 第476頁 表13.1

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第476-477頁 實驗設計介紹(實例) 真正的問題是,這三個樣本平均數之差異是否大到可以使我們下結論,即三種組裝方式之產量不同。為以統計名詞表達此問題,我們先介紹下列符號。 μ1=方法 A 平均每星期產量 μ2=方法 B 平均每星期產量 μ3=方法 C 平均每星期產量 雖然我們不可能知道 μ1, μ2 及 μ3真正的值,但我們可使用樣本平均數檢定下列的假設。 H0:μ1= μ2=μ3 Ha:所有母體平均數不全相等 11 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第476-477頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475 - 477頁 變異數分析介紹 變異數分析(ANOVA)能用來分析得自觀察型研究的資 料,以檢定三個或三個以上的母體平均數是否相等。 在分析同時包含實驗型及觀察型資料之迴歸分析結果時 ,ANOVA扮演重要角色。 我們可以使用這些樣本資料的結果進行下列假設檢定: H0: 1=2=3=. . . = k Ha: 所有母體平均不全相等 17 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第475 - 477頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第477頁 變異數分析介紹 H0: 1=2=3=. . . = k Ha: 所有母體平均不全相等 如果拒絕 H0,我們不能下結論說所有的母體平均數 都不相等。 拒絕 H0 意指至少有兩個母體平均數不相等。 18 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第477頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第477頁 變異數分析的假設 1. 每個母體之反應變數均呈常態分配。 2. 所有母體反應變數的變異數 σ2均相等。 3. 由每個母體抽取之樣本必須互為獨立。 21 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第477頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第478頁 圖13.2 變異數分析介紹 19 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第478頁 圖13.2

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第478頁 圖13.3 變異數分析介紹 20 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第478頁 圖13.3

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第478頁 變異數分析介紹 每一組樣本之樣本內差異亦將影響變異數分析之結論。當由每個母體中抽取一組隨機樣本時,每一組的樣本變異數均應為共同變異數σ2 的不偏估計值。因此,我們將結合共同變異數σ2 的每個個別估計值,成為一個總樣本估計值。以此方式獲得的母體變異數σ2 的估計值稱為σ2 之混合或處理內估計值 (pooled or within-treatments estimate)。 由於σ2 之處理內估計值乃每組樣本組內變異所計算而得之樣本變異數,故不受母體平均數是否相等之影響。當樣本大小相等時,σ2 之處理內估計值可由計算各個樣本變異數之平均數而得。 23 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第478頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第479頁 變異數分析介紹(實例) 在 Chemitech公司的例子中,我們可得 σ2 的處理間估計值 (260) 遠大於處理內估計值(28.33),事實上,這兩個估計值之比為 260/28.33=9。 24 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第479頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第479頁 變異數分析介紹 只有當虛無假設為真時,處理間估計值方為σ2 的一個好的估計值;若虛無假設為偽,處理內估計值將高估σ2 。但處理內估計值則不論在何種情況下,均為共同母體變異數σ2 的良好估計值。因此,若虛無假設為真,此兩個估計值應極為接近,它們的比也應接近 1;如果虛無假設為偽,處理間估計值應大於處理內估計值,且它們的比應該較大。 25 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第479頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第479頁 變異數分析介紹 ANOVA 背後的邏輯乃基於共同母體變異數σ2 的兩種獨立估計方式發展而成。一種σ2 的估計方式係基於各種樣本平均數間之差異計算而得,另一種方式則由每組樣本的組內變異數計算而得。藉由比較上述兩個σ2 的估計值,我們將可決定母體平均數是否相等。 26 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第479頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第479 - 頁 13.2 變異數分析與完全隨機設計 母體變異數之處理間估計值 母體變異數之處理內估計值 比較變異數之估計值:F 檢定 ANOVA 表 變異數分析之電腦結果 檢定k個母體是否相等 27 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第479 - 頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第479頁 變異數分析: 變異數分析可以用來檢定 k 個母體平均數是否相等。 其假設檢定之一般形式為 H0: 1=2=3=. . . = k Ha: 所有母體平均數不全相等 其中 j = 第 j 個母體平均數 28 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第479頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第480頁 變異數分析: 樣本資料 = 第 j 個處理的第 i 個觀察值 = 第 j 個處理的觀察值個數 = 第 j 個處理的樣本平均數 = 第 j 個處理的樣本變異數 = 第 j 個處理的樣本標準差 29 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第480頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第480頁 變異數分析: 第 j 個處理的樣本平均數公式: 第 j 個處理的樣本變異數公式 30 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第480頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第480頁 變異數分析: 總樣本平均數 其中 nT = n1 + n2 +. . . + nk 如果每組樣本數均為 n,則 n = kn 31 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第480頁

檢定 k 個母體平均數是否相等 Chemitech公司實例 在Chemitech公司的例子中,每個樣本數均為 6。使用表 13.1 的資料,我們可以得到下列結果 如果虛無假設為真 (1=2=3=. . . = k),總樣本平均數 60即為母體平均數 μ 的最佳估計值。 32 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第480頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第481頁 母體變異數之處理間估計值 處理間平方和 (sum of squares due to treatments),記做SSTR 處理間均方 (mean square due to treatments),記作MSTR 分母 k-1 為SSTR的自由度 33 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第481頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第480-481頁 母體變異數之處理間估計值 2 的處理間估計值稱為處理間均方 (Mean Square Due to Treatments),記作 MSTR,計算MSTR 的公式如下: 處理間平方和(sum of squares between treatments或sum of squares due to treatments),記作 SSTR k- 1 為 SSTR 的自由度 13 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第480-481頁

母體變異數之處理間估計值 (Chemitech公司實例) 若 H0 為真,則 MSTR 為 σ2 的不偏估計值。 當 k 個母體平均數不相等時,MSTR 將不再是 σ2 的不偏估計值。事實上,此時 MSTR 將高估 σ2 。 由表 13.1 NCP公司的資料,我們可得到下列的結果。 34 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第481頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第481頁 母體變異數之處理內估計值 誤差平方和 (sum of squares due to error),記作SSE 誤差均方 (mean square due to error),記作MSE 分母 nT-k 為SSTR的自由度 35 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第481頁

母體變異數之處理內估計值 (Chemitech 公司實例) MSE 來自於每個處理內的差異,它不會受虛無假設是否為真的影響。因此,MSE 恆為 σ2 的一不偏估計值。 由表 13.1 Chemitech 公司的資料,我們可以得到下列的結果。 36 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第481-482頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第482頁 比較變異數之估計值:F檢定 若虛無假設為真且 ANOVA 之假設均成立, MSTR/MSE 的抽樣分配將會服從分子自由度為 k-1,分母自由度為nT-k 的 F 分配。換言之, 若虛無假設為真,MSTR/MSE 的值會是從此 F 分配抽樣而得的結果。 若虛無假設為假,則因MSTR高估σ2,MSTR/MSE 的值將提高。 因此,當MSTR/MSE 的值太大,使其不似來自分 子自由度為 k-1,分母自由度為nT-k 的 F 分配時,我們將拒絕H0。 37 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第482頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第483頁 比較變異數之估計值:F 檢定 假設檢定 H0: 1=2=3=. . . = k Ha: 所有母體平均數不全相等 檢定統計量 F = MSTR/MSE 38 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第483頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第483頁 比較變異數之估計值:F 檢定 拒絕法則 p 值法: 若 p 值 ≤ a,則拒絕 H0 絕對值法: 若 F ≥ Fa,則拒絕 H0 其中 F值係由分子自由度 k - 1 ,分母自由度 nT – k 之 F 分配查表而得。 39 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第483頁

比較變異數之估計值:F檢定 (Chemitech 公司實例) 若使用顯著水準 α =0.05來進行假設檢定,則檢定統計量的值 其分子自由度為 k-1=3-1=2,分母自由度為 nT-k=15-3=12。由於我們只在檢定統計量的值夠大時,才會拒絕虛無假設,因此 p 值為 F 分配在檢定統計量 F=9.18 的右尾區域的面積值。 圖13.4為 F=MSTR/MSE 的抽樣分配、檢定統計量的值及此假設檢定右尾區域的 p 值。 40 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第482頁

比較變異數之估計值:F檢定 (Chemitech 公司實例) 查附錄 B 表 4,分子自由度為 2,分母自由度為 12的 F 分配,其右尾區域的範圍如下 由於 F=9.18 大於 6.93,因此 F=9.18的右尾區域會小於 0.01,亦即 p 值小於 0.01。因為 p 值 ≤ α=0.05,所以拒絕 H0。 此檢定提供了充分的證據顯示三個母體平均數不相等。換言之,變異數分析支持 Chemitech 公司三家工廠的平均測驗成績不全相等之結論。 42 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第482-483頁

比較變異數之估計值:F檢定 (Chemitech公司實例) 我們也可以使用臨界值的方法進行此假設檢定的程序。假設 α=0.05,在自由度為 2 與 12 的 F 分配,其右尾區域的面積為 0.05 處,可找到臨界 F 值,查 F 分配表,可得 F0.05=3.89。因此,NCP 公司的例子其右尾拒絕法則為 若 F ≥ 3.89,則拒絕H0 由於 F=9.18,因此拒絕 H0,結論為三個母體的平均數不全相等。 44 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第483頁

ANOVA 表 變異數 平方和 自由度 均方 F 處理 誤差 總和 SSTR SSE SST k – 1 nT – k nT - 1 MSTR MSE MSTR/MSE SST 的自由度可分解為 SSTR 的自由度與 SSE 的自由度 SST 可以分解為 SSTR 與 SSE 45 第13章 變異數分析與實驗設計 Part A (13.1-13.3)

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第484頁 ANOVA 表 SST 可分解為兩個平方和:處理間平方和與誤差平 方和。SST 之自由度nT-1亦可分解為 SSTR 之自由 度 k-1 與 SSE 之自由度 nT-k。 若將所有觀察值視為同一組樣本,則總平方和 SST 之計算公式為 46 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第484頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第484頁 ANOVA 表 我們可將變異數分析視為分割(partitioning)總平方和 與自由度為兩種不同來源:處理與誤差的一個過程。 將平方和除以相對應之自由度即為變異數之估計值。 由此得到的 F 值可用以檢定母體平均數是否相等之 假設。 47 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第484頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第484頁 表13.3 ANOVA 表 (NCP公司實例) 表 13.3 即為 Chemitech 公司之變異數分析表。 48 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第484頁 表13.3

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第485頁 圖13.5 變異數分析之電腦結果 49 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第485頁 圖13.5

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第490頁 13.3 多重比較程序 假設變異數分析已提供拒絕母體平均數相等之虛無假設的統計證據。 費雪最低顯著差異 (least significant difference, LSD) 程序可用以決定哪些母體平均數間存在差異。 50 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第490頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第490頁 費雪 LSD 程序 假設檢定 檢定統計量 51 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第490頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第491頁 費雪 LSD 程序 拒絕法則 p 值法: 若 p 值 ≤ a,則拒絕 H0 絕對值法: 若 t ≤ -ta/2 或 t ≥ ta/2,則拒絕 H0 其中 ta/2 值係查自由度為 nT – k 之 t 分配表而得。 52 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第491頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第492頁 費雪 LSD 程序 (實例) 利用費雪LSD程序檢定在 α =0.05 的顯著水準下,母體1 (方法A) 與母體 2 (方法B) 之平均數間是否存在顯著差異。 由表 13.1 得知,方法A之樣本平均數是62,方法B之樣本平均數為 66。 表 13.3 則顯示母體變異數之估計值,即 MSE,為 28.33,其為σ2之估計值且對應之自由度為 12。根據 Chemitech 公司的資料,檢定統計量的值為 53 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第492頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第491頁 費雪 LSD 程序 (實例) 查附錄B表2可知,t 分配表只有正的 t 值,但 t 分配是左右對稱,我們可以找 t=1.19 右尾的面積,此面積的兩倍即是 t=-1.19 對應的 p 值。當 t=1.19,其面積介於 0.20 與 0.10 之間,將之乘以 2,可知 p 值一定介於 0.40 與 0.20 之間。 利用 Minitab 或 Excel 可以算出 t=1.62 對應的 p 值為0.1261。由於 p 值大於 α =0.05,我們不能拒絕虛無假設,因此,我們不能下結論為方法 A 母體的每週平均產量與方法 B 母體的每週平均產量不相等。 54 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第491頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第491-492頁 以檢定統計量 為基礎 之費雪 LSD 程序 假設檢定 檢定統計量 拒絕法則 若 > LSD,拒絕 H0 其中 55 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第491-492頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第492頁 費雪LSD程序(實例) 就 Chemitech 公司之例子而言,LSD 之值為 當樣本大小均相同時,我們只需計算一個 LSD 值。在此情況下,我們僅需將兩樣本平均數之差異值與 LSD 值進行比較。 56 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第492頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第492頁 費雪 LSD 程序 (實例) 例如,母體 1 (方法A) 與母體 3 (方法C) 之平均數差為 62-52=10。由於此值大於 LSD =7.34,我們可以拒絕亞特蘭大廠與西雅圖廠之母體平均測驗成績相等之假設。同樣地,由於母體 2 與母體 3 的樣本平均數差為 66-52=14 >7.34,我們也拒絕方法B與方法C之母體平均測驗成績相等之假設。事實上,我們的結論是方法A 、方法B與方法C存在差異。 57 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第492頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第492頁 費雪 LSD 程序 使用費雪 LSD 程序估計兩母體平均數差之信賴區間 其中 ta/2 值係查自由度為 nT – k 之 t 分配表而得。 信賴區間包含「0」在內,我們將無法拒絕兩母體平均數相等之假設。當信賴區間不含「0」時,我們可得到兩母體平均數確實存在差異之結論。 58 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第492頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第492頁 費雪 LSD 程序 (實例) 在Chemitech 公司的例子中,LSD=7.34 (對應 t0.025=2.179)。 因此,母體 1、母體 2 之平均數差的 95% 信賴區間估計值為:62-66 ± 7.34=-4 ± 7.34=-11.34到 3.34。 由於此一信賴區間包含 0,故無法拒絕此兩母體平均數相等之假設。 59 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第492頁

第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第493頁 型Ⅰ誤差率 比較的型 I 誤差率 (comparisonwise Type I error rate) 即是進行單一的一對母體平均數比較時的顯著水準。 實驗的型 I 誤差率 (experimentwise Type I error rate) 表示為αEW。 當檢定問題所牽涉之母體數愈多時,實驗的型 I 誤差率將愈大。 aEW = 1 – (1 – a)(k – 1)! 60 第13章 變異數分析與實驗設計 Part A (13.1-13.3) 第493頁

End of Chapter 13, Part A