弦切角、圓內角及圓外角 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,

Slides:



Advertisements
Similar presentations
工職數學 第四冊 第一章 導 數 1 - 1 函數的極限與連續 1 - 2 導數及其基本性質 1 - 3 微分公式 1 - 4 高階導函數.
Advertisements

不定積分 不定積分的概念 不定積分的定義 16 不定積分的概念 16.1 不定積分的概念 以下是一些常用的積分公式。
大綱 1. 三角函數的導函數. 2. 反三角函數的導函數. 3. 對數函數的導函數. 4. 指數函數的導函數.
中垂線之尺規作圖與性質 公館國中 蘇柏奇老師 興華高中 馬鳳琴老師 興華高中 游淑媛老師. 2 中垂線的尺規作圖 作法: 已知: 求作: 的中垂線 Q : 直線 CD 真的是中垂線嗎 ? A B C D 1. 以 A 為圓心,適當長為半徑劃弧 2. 以 B 為圓心,相同長度為半徑劃弧 兩弧相交於 C,D.
北大附中深圳南山分校 倪 杰 2016年8月25日星期四 2016年8月25日星期四 2016年8月25日星期四 Ox y 1 1 y=a x (a>1)
變數與函數 大綱 : 對應關係 函數 函數值 顧震宇 台灣數位學習科技股份有限公司. 對應關係 蛋餅飯糰土司漢堡咖啡奶茶 25 元 30 元 25 元 35 元 25 元 20 元 顧震宇 老師 台灣數位學習科技股份有限公司 變數與函數 下表是早餐店價格表的一部分: 蛋餅 飯糰 土司 漢堡 咖啡 奶茶.
圓的一般式 內容說明: 由圓的標準式展出圓的一般式.
第 3 章 方程與圖像.
圓的一般式 內容說明: 由圓的標準式展出圓的一般式.
1-2 解二元一次聯立方程式 主題一:二元一次聯立方程式 主題二:代入消去法 主題三:加減消去法 重點整理 新竹縣立湖口國民中學
圓與直線的關係 組員: 郭雅萍 黃瑜惠 梁鈺敏 蔡易璋.
認識倍數(一) 設計者:建功國小 盧建宏.
5.1 自然對數函數:微分 5.2 自然對數函數:積分 5.3 反函數 5.4 指數函數:微分與積分 5.5 一般底數的指數函數和應用 5.6 反三角函數:微分 5.7 反三角函數:積分 5.8 雙曲函數.
圓心角、圓周角與弦切角 圓心角 圓周角 弦切角 圓內角 圓外角 ∠AOB= ∠APB= ∠APC= A B P m0 A B P m0 A
點及直線與圓的關係 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,
大綱: AAA 性質 SAS 性質 SSS 性質 顧震宇 台灣數位學習科技股份有限公司
大綱: 觀念與定義 連比例式的性質 蘇德宙 台灣數位學習科技股份有限公司
2-1 直線方程式及其圖形 直線的斜率 1 直線的方程式 2 兩直線關係 直線方程式及其圖形 page.1/22.
4B冊 認識公倍數和最小公倍數 公倍數和最小公倍數的關係.
銳角三角函數的定義 授課老師:郭威廷.
圓心角及其所對的弧 圓周角及其所對的弧 圓內接四邊形 弦切角及其所夾的弧 圓內角與圓外角
下列敘述正確的打「○」,錯誤的打「×」。 ( )兩個等腰直角三角形一定相似。 ( )兩個梯形一定相似。 ( )兩個正六邊形一定相似。
單元設計 單元主題:兩圓的位置關係 授課時數:5節(225分鐘) 適用年級:八九年級
6.1 利用正弦公式及餘弦公式解三角形 正弦公式.
1.3 在整除性問題之應用 附加例題 3 © 文達出版 (香港 )有限公司.
大綱: 方程式的解及其圖形 直線方程式 聯立方程式的圖形 顧震宇 台灣數位學習科技股份有限公司
點與圓.
搭配課本第119頁. 搭配課本第119頁 圖1 搭配課本第119頁 圖2 搭配課本第119頁.
搭配頁數 P.35 比例式 1.比的前項、後項與比值:    .
----直線運動 應用力學by志伯 ----直線運動
Ch2多項式函數 2-2 多項式的運算與應用 影音錄製:陳清海老師 資料提供:龍騰文化事業股份有限公司.
第一章 直角坐標系 1-3 函數圖形.
15.3 極大與極小 附加例題 5 附加例題 6 © 文達出版 (香港 )有限公司.
學習單元:N6 數的性質 學習單位:N6-3 用短除法求H.C.F. 和 L.C.M. 學習重點 : 1. 複習因數分解法求
縮放及相似形 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,
圓心角及圓周角 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,
箏形及梯形 大綱:箏形 (兩組鄰邊等長) 梯形 (一組對邊平行) 顧震宇 台灣數位學習科技股份有限公司.
點與圓的位置關係 直線與圓的位置關係 兩圓的位置關係
弦切角 弦 B O 為夾 的弦切角 切線 A C 切點 顧震宇老師 台灣數位學習科技股份有限公司.
和的平方公式 乘法公式 蘇德宙 老師 台灣數位學習科技股份有限公司 和的平方公式
大綱:加減法的化簡 乘除法的化簡 去括號法則 蘇奕君 台灣數位學習科技股份有限公司
微積分網路教學課程 應用統計學系 周 章.
圓的定義 在平面上,與一定點等距的所有點所形成的圖形稱為圓。定點稱為圓心,圓心至圓上任意一點的距離稱為半徑,「圓」指的是曲線部分的圖形,故圓心並不在圓上.
大綱: 方程式的解與圖形 畫方程式的圖形 方程式圖形的平移 聯立方程式的解與圖形 蘇德宙 台灣數位學習科技股份有限公司
( )下列各圖中何者的L1與L2會平行? C 答 錯 對 (A) (B) (C) (D)
圓 與 直 線 的 關 係 1.點與圓的位置關係 2.直線與圓的位置關係 3.圓的切線方程式.
1-2 相似三角形 ● 平行線截比例線段性質:兩條直線 M1、M2 被另一組平行線 L1//L2//L3 所截出來的截線段會成比例。
第一章 直 線 ‧1-3 二元一次方程式的圖形.
大綱: 母子相似性質 內、外分比性質 重點複習 顧震宇 台灣數位學習科技股份有限公司
AAA相似性質與AA相似性質 SAS相似性質 SSS相似性質
大綱: 縮放的定義及性質 相似形的定義及性質 顧震宇 台灣數位學習科技股份有限公司
相似三角形的應用 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析,
大綱: 比與比值 比例式及其性質 應用問題 顧震宇 台灣數位學習科技股份有限公司
7.3 餘弦公式 附加例題 3 附加例題 4.
例題 1. 多項式的排列 1-2 多項式及其加減法 將多項式 按下列方式排列: (1) 降冪排列:______________________ (2) 升冪排列:______________________ 排列 降冪:次數由高至低 升冪;次數由低至高.
1-1 二元一次式運算.
4-2二元一次方程式的圖形 授課老師:黃韋欽 上課教材:南一版.
5432-認知-P-期末-0501 檔案命名規則 課號: 5432 課程名稱:認知與數位教學 作業名稱:認知-P-期末-0501 分組名單
大綱: 直線與圓的位置關係 切線相關性質 弦及弦心距 顧震宇 台灣數位學習科技股份有限公司
⁀ ⁀ ⁀ ⁀ ⁀ 配合課本P85 例題1.
1-4 和角公式與差角公式 差角公式與和角公式 1 倍角公式 2 半角公式 和角公式與差角公式 page.1/23.
第一章 直角坐標系 1-3 函數及其圖形.
4-1 變數與函數 第4章 一次函數及其圖形.
在直角坐標平面上兩點之間 的距離及平面圖形的面積
解下列各一元二次方程式: (1)(x+1)2=81 x+1=9 或 x+1=-9 x=8 或 x=-10 (2)(x-5)2+3=0
以下是一元一次方程式的有________________________________。
一元一次方程的解法(-).
8.3 分點公式 附加例題 2 附加例題 3 © 文達出版 (香港 )有限公司.
大綱: 比例線段定義 平行線截比例線段性質 顧震宇 台灣數位學習科技股份有限公司
第三章 比與比例式 3-1 比例式 3-2 連比例 3-3 正比與反比.
Presentation transcript:

弦切角、圓內角及圓外角 (題型解析) 顧震宇 台灣數位學習科技股份有限公司 這個單元老師講解變數與函數的題型解析, 其中包含函數定義相關問題,主要是判斷兩個變數是否為函數關係的問題, 還有關於函數值的問題,最後講解有關函數相關的應用問題。

弦切角 弦切角與弧的度數 A C O 切線 L E B D 為弦切角 的夾弧 為弦切角 的夾弧 弦切角、圓外角及圓內角 – 題型解析 一開始,我們介紹連比例式的定義 我們用 x, y, z = a, b, c 來表示這兩個連比的比例相等 而比例相等的意思就是兩兩之間要成比例 也就是 x : y = a : b, y : z = b : c 而且 x : z = a : c 要同時成立 雖然定義告訴我們 3 個條件要同時成立 但因為只要前面兩個條件成立,就可以得到第三個關係式 這就是我們介紹的性質一 若定義中 3 個條件中兩個成立,一樣可以得到連比例式的關係 例如, x : y, y : z,就可以得到 x : y : z 的關係 要注意,這裏共同的 y 所對應的值 b 要一樣 如果不一樣呢? 例如,5 : 2 和 3 : 4 我們就要透過比的擴分性質 將 5 : 2 乘以 3,3 : 4 乘以 2 讓中間的項得到相同的 6 而這個性質的證明關鍵是利用 x : y = a : b來得到 x / a = y / b 的關係 最後得到 x / c = y / z,也就是第三個條件 x : z = a : c 接著我們則介紹比的擴分與約分 也就是同時乘或除一個不為 0 的數,比例關係不變 例如,因為這裏的 4 x 2 = 8,也就是 m = 2,每一項都 x 2 就可以分別得到 x = 5x2 與 y = 9 x 2 的值了 而性質2 的證明則直接應用比的擴分 a : b = am : bm 和 第一個性質 a : b, b : c 的條件而得到 a : b : c = am : bm : cm 性質 3 則是一個重要的解題技巧 也就是當看到 x : y : z = a : b : c 時,我們通常可以假設 x = am, y = bm, z = cm 代入題目求解 例如,x : y : z = 2 : 1 : 3,就可以將 x, y, z 用 2m, m 和 3m 代入 因為每一項都有 m,最後可以約去而得到答案 因為通常都可以約去,有時候我們可以直接審略 m 直接用 2, 1, 3 代入來更快得到答案 而這個性質的證明,則是利用 x : y : z = a : b : c 來得到 x/a = y / b = z / c 的關係 將這個值設成 m,就可以得到 x=am, y=bm, z=cm 了 為弦切角 的夾弧 為弦切角 的夾弧 顧震宇 老師 台灣數位學習科技股份有限公司

例題 1. (弦切角) 如圖, ,直線 為過 B 點的切線,則 A C B 弦切角與弧的度數 [解答] 45 度 A B C 弦切角、圓外角及圓內角 – 題型解析 如圖, ,直線 為過 B 點的切線,則 弦切角與弧的度數 A A B C B C 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 [解答] 45 度 顧震宇 老師 台灣數位學習科技股份有限公司

例題 2. (圓心角、圓周角及弦切角) 如圖, 為圓 O 的弦,直線 切圓 O 於 A 點,若 , 則 及 的度數各為多少 ? C A O 弦切角、圓外角及圓內角 – 題型解析 如圖, 為圓 O 的弦,直線 切圓 O 於 A 點,若 , 則 及 的度數各為多少 ? C 弦切角與弧的度數 A A O D B C B 圓心角與弧的度數 圓周角與弧的度數 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 A A O B B C 顧震宇 老師 台灣數位學習科技股份有限公司

例題 3. (圓內接正多邊形) 如圖,五邊形 ABCDE 為圓內接正五邊形,直線 切圓 O 於 A 點, 則 P A E B O C D 弦切角、圓外角及圓內角 – 題型解析 如圖,五邊形 ABCDE 為圓內接正五邊形,直線 切圓 O 於 A 點, 則 P A 弦切角與弧的度數 A B E O B C 等弦對等弧 C D 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 A M O B N D C [解答] 36 度 顧震宇 老師 台灣數位學習科技股份有限公司

例題 4. (平行線截等弧) 如圖, 為圓內接三角形,直線 DE 切圓於 A 點,且 , 若 ,則 C B D A E 弦切角與弧的度數 弦切角、圓外角及圓內角 – 題型解析 如圖, 為圓內接三角形,直線 DE 切圓於 A 點,且 , 若 ,則 弦切角與弧的度數 C A B B C D A 圓周角與弧的度數 E 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 A B C [解答] 76 度 顧震宇 老師 台灣數位學習科技股份有限公司

例題 5. (兩圓及弦切角) 如圖,兩圓交於 A、B 兩點,直線 PQ 分別切兩圓於 P、Q 兩點, 若 ,求 P Q A B 弦切角、圓外角及圓內角 – 題型解析 如圖,兩圓交於 A、B 兩點,直線 PQ 分別切兩圓於 P、Q 兩點, 若 ,求 弦切角與弧的度數 P Q A A B C B 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 [解答] 137o 顧震宇 老師 台灣數位學習科技股份有限公司

圓內角及圓外角 圓內角與弧的度數 D A E B C 圓外角與弧的度數 A A A B B C E E E D B C C 弦切角、圓外角及圓內角 – 題型解析 圓內角與弧的度數 D A E B C 圓外角與弧的度數 A A A B B C 一開始,我們介紹連比例式的定義 我們用 x, y, z = a, b, c 來表示這兩個連比的比例相等 而比例相等的意思就是兩兩之間要成比例 也就是 x : y = a : b, y : z = b : c 而且 x : z = a : c 要同時成立 雖然定義告訴我們 3 個條件要同時成立 但因為只要前面兩個條件成立,就可以得到第三個關係式 這就是我們介紹的性質一 若定義中 3 個條件中兩個成立,一樣可以得到連比例式的關係 例如, x : y, y : z,就可以得到 x : y : z 的關係 要注意,這裏共同的 y 所對應的值 b 要一樣 如果不一樣呢? 例如,5 : 2 和 3 : 4 我們就要透過比的擴分性質 將 5 : 2 乘以 3,3 : 4 乘以 2 讓中間的項得到相同的 6 而這個性質的證明關鍵是利用 x : y = a : b來得到 x / a = y / b 的關係 最後得到 x / c = y / z,也就是第三個條件 x : z = a : c 接著我們則介紹比的擴分與約分 也就是同時乘或除一個不為 0 的數,比例關係不變 例如,因為這裏的 4 x 2 = 8,也就是 m = 2,每一項都 x 2 就可以分別得到 x = 5x2 與 y = 9 x 2 的值了 而性質2 的證明則直接應用比的擴分 a : b = am : bm 和 第一個性質 a : b, b : c 的條件而得到 a : b : c = am : bm : cm 性質 3 則是一個重要的解題技巧 也就是當看到 x : y : z = a : b : c 時,我們通常可以假設 x = am, y = bm, z = cm 代入題目求解 例如,x : y : z = 2 : 1 : 3,就可以將 x, y, z 用 2m, m 和 3m 代入 因為每一項都有 m,最後可以約去而得到答案 因為通常都可以約去,有時候我們可以直接審略 m 直接用 2, 1, 3 代入來更快得到答案 而這個性質的證明,則是利用 x : y : z = a : b : c 來得到 x/a = y / b = z / c 的關係 將這個值設成 m,就可以得到 x=am, y=bm, z=cm 了 E E E D C B C 顧震宇 老師 台灣數位學習科技股份有限公司

例題 6. (圓內角) 如圖,圓內兩弦 和 交於 E 點,若 , , 求 D A E B C 圓內角與弧的度數 [解答] 120 度 C A 弦切角、圓外角及圓內角 – 題型解析 如圖,圓內兩弦 和 交於 E 點,若 , , 求 D A E B C 圓內角與弧的度數 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 C A E B D [解答] 120 度 顧震宇 老師 台灣數位學習科技股份有限公司

例題 7. (圓外角) 如圖,圓的割線 與切線 交於 P 點,若 , , 求 A B P C A B E C 圓外角與弧的度數 弦切角、圓外角及圓內角 – 題型解析 如圖,圓的割線 與切線 交於 P 點,若 , , 求 A B P 圓外角與弧的度數 C A 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 B E C [解答] 100o 顧震宇 老師 台灣數位學習科技股份有限公司

例題 8. (圓內角及圓外角) 如圖, 與 延長交於 P 點, 與 交於 Q 點, 若 , ,則 A C P Q D B A B E D C 弦切角、圓外角及圓內角 – 題型解析 如圖, 與 延長交於 P 點, 與 交於 Q 點, 若 , ,則 A C P Q D B 圓外角與弧的度數 A 圓內角與弧的度數 B 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 E C A D C E B D [解答] 90 度 顧震宇 老師 台灣數位學習科技股份有限公司

例題 9. (圓內接四邊形及圓外角) 如圖,圓的切線 PA 與 PB 分別與圓相切於 A、B 兩點, 若 ,則 A P D C B A C 弦切角、圓外角及圓內角 – 題型解析 如圖,圓的切線 PA 與 PB 分別與圓相切於 A、B 兩點, 若 ,則 A P D C B 圓外角與弧的度數 A 圓內接四邊形對角互補 例題 1. 下列哪一種對應關係中 y 是 x 的函數? 這類型判斷是否為函數的題目,需要熟悉定義,我們來複習一下定義,對於每一個 x,都只有一個 y 與 x 對應, 變數 y 稱為變數 x 的函數,通常記為 f(x),其中 x 稱為自變數,y 稱為應變數。 回到題目,第一小題,x=1 時,y=a 與 1 對應,x=2時,y=a與 2 對應,但是 x=3 時並沒有 y 的值與 3 對應, 所以 y 並不是 x 的函數。 第二小題,當 x=1 時,y 分別等於 a 與 c 與 1 對應,這與定義中「對於每個x,只有一個 y 與其對應」這句話相違背, 第三小題,當x=1時,y=b 與 1 對應,x=2 時,y=b與 2 對應,當 x=3 時,y=c 與 3 對應, 所以 y 為 x 的函數。 C A E C B D B 顧震宇 老師 台灣數位學習科技股份有限公司

重點整理 已知 x, y 的和為 6,且 x 的 2 倍比 y 的 3 倍多 2,求 x, y x + y = 6 …….. (1) 圓心角、圓周角及弦切角 – 題型解析 已知 x, y 的和為 6,且 x 的 2 倍比 y 的 3 倍多 2,求 x, y x + y = 6 …….. (1) 2x = 3y + 2 ….. (2) 聯立方程式的解 在聯立方程式中,x, y 的值 同時滿足每一個方程式的解 解聯立方程式 將兩個變數化簡成一元一次式後 求得其中一個變數的值 1. 代入消去法 2. 加減消去法 解的情形 一組解、無解 or 無限多組解 x - 2y = 1 x + y = 13 x = 2y + 1 -) 2y + 1 + y = 13 -3y = -12 x + y = 2 2x + 2y = 4 x + y = 4 x + y = 8 顧震宇 老師 台灣數位學習科技股份有限公司

兩圓的位置關係 圖形關係 關係名稱 交點個數 連心線長 外離 外切 1 相交兩點 2 內切 1 內離 圓心角、圓周角及弦切角 – 題型解析 外切 1 相交兩點 2 一開始,我們介紹連比例式的定義 我們用 x, y, z = a, b, c 來表示這兩個連比的比例相等 而比例相等的意思就是兩兩之間要成比例 也就是 x : y = a : b, y : z = b : c 而且 x : z = a : c 要同時成立 雖然定義告訴我們 3 個條件要同時成立 但因為只要前面兩個條件成立,就可以得到第三個關係式 這就是我們介紹的性質一 若定義中 3 個條件中兩個成立,一樣可以得到連比例式的關係 例如, x : y, y : z,就可以得到 x : y : z 的關係 要注意,這裏共同的 y 所對應的值 b 要一樣 如果不一樣呢? 例如,5 : 2 和 3 : 4 我們就要透過比的擴分性質 將 5 : 2 乘以 3,3 : 4 乘以 2 讓中間的項得到相同的 6 而這個性質的證明關鍵是利用 x : y = a : b來得到 x / a = y / b 的關係 最後得到 x / c = y / z,也就是第三個條件 x : z = a : c 接著我們則介紹比的擴分與約分 也就是同時乘或除一個不為 0 的數,比例關係不變 例如,因為這裏的 4 x 2 = 8,也就是 m = 2,每一項都 x 2 就可以分別得到 x = 5x2 與 y = 9 x 2 的值了 而性質2 的證明則直接應用比的擴分 a : b = am : bm 和 第一個性質 a : b, b : c 的條件而得到 a : b : c = am : bm : cm 性質 3 則是一個重要的解題技巧 也就是當看到 x : y : z = a : b : c 時,我們通常可以假設 x = am, y = bm, z = cm 代入題目求解 例如,x : y : z = 2 : 1 : 3,就可以將 x, y, z 用 2m, m 和 3m 代入 因為每一項都有 m,最後可以約去而得到答案 因為通常都可以約去,有時候我們可以直接審略 m 直接用 2, 1, 3 代入來更快得到答案 而這個性質的證明,則是利用 x : y : z = a : b : c 來得到 x/a = y / b = z / c 的關係 將這個值設成 m,就可以得到 x=am, y=bm, z=cm 了 內切 1 內離 顧震宇 老師 台灣數位學習科技股份有限公司