第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
1.多元函数积分学 (1)计算其中D为x+y=2,x=,y=2所围成的有界区域 (2)计算其中D为 (3)计算三重积分其中由曲面围成 (4)求曲面f(x,y)=1-x-y与g(x,y)=所围成的空间区域的体积 (5)求曲面在xOy平面上部的面积S (6)在xOz平面内有一个半径为2的圆,它与z轴在原点O相切求它绕z轴旋转一周所得旋转体体积 (7)求其中,路径L为 (8)计算曲面积分其中D为锥面被柱面所截的得的有限部分0
2.程序 function [ output_args ] =experiment05 %多元函数积分学 clc; close all; %example 1 syms x y int(int(x*y^2,x,2-y,sqrt(y)),y,1,2) %example 2 syms real f=exp(-(x^2+y^2)); int(int(f,y,-sqrt(1-x^2),sqrt(1-x^2)),x,-1,1) syms r theta f=exp(-r^2)*r; int(int(f,r,0,1),theta,0,2*pi) %example 3
[x,y]=meshgrid(-1:0.05:1); z=sqrt(x.^2+y.^2); figure(3); surf(x,y,z); title('上半球面z=sqrt(2-x^2-y^2)与圆锥面z=sqrt(x^2+y^2)所围成的区域的图象'); hold on; z=sqrt(2-x.^2-y.^2); clear; syms r z theta %柱坐标计算 f=(r^2+z)*r; int(int(int(f,z,r,sqrt(2-r^2)),r,0,1),theta,0,2*pi) %球坐标计算 syms t f=(r^2*sin(t)^2+r*cos(t))*r^2*sin(t); simple(int(int(int(f,r,0,sqrt(2)),t,0,pi/4),theta,0,2*pi)) %example 4
syms x y figure(4); ezsurf('1-x-y'); hold on; ezsurf('2-x^2-y^2'); [x,y]=meshgrid(-1:0.05:2); z=1-x-y; surf(z); z=2-x.^2-y.^2; colormap([0 0 1]); solve('1-x-y=2-x^2-y^2',y) x=-1:0.01:2; y1=1/2-1/2*(5+4*x-4*x.^2).^(1/2); figure(2);
plot(x,y1,'r'); hold on; y2=1/2+1/2*(5+4*x-4*x.^2).^(1/2); plot(x,y2,'b'); solve('1/2-1/2*(5+4*x-4*x^2)^(1/2)=1/2+1/2*(5+4*x-4*x^2)^(1/2)',x) syms x y f='(2-x^2-y^2)-(1-x-y)'; volume=int(int((2-x^2-y^2)-(1-x-y),y,1/2-1/2*(5+4*x-4*x^2)^(1/2),1/2+1/2*(5+4*x-4*x^2)^(1/2)),x,(1-sqrt(6))/2,(1+sqrt(6))/2); eval(volume) %example 5 syms z figure(5);
f=sqrt(1+diff(z,x)^2+diff(z,y)^2) syms r t f='sqrt(1+4*r^2)*r'; ezsurf('4-x^2-y^2'); z='4-x^2-y^2'; f=sqrt(1+diff(z,x)^2+diff(z,y)^2) syms r t f='sqrt(1+4*r^2)*r'; S=int(int(f,r,0,2),t,0,2*pi) %example 6 syms r theta t f='r^2*sin(t)'; V=int(int(int(f,r,0,4*sin(t)),t,0,pi),theta,0,2*pi) %example 7 x=t; y=t^2; z=3*t^2; f='sqrt(1+30*x^2+10*y)'; f1=f*sqrt(diff(x,t)^2+diff(y,t)^2+diff(z,t)^2); S=int(f1,t,0,2) %example 8
syms x y z t r f=x*y+y*z+z*x; z=sqrt(x^2+y^2); f=subs(f,'z',z); mj=sqrt(1+diff(z,x)^2+diff(z,y)^2); x=r*cos(t); y=r*sin(t); f=eval(f); mj=eval(mj); f1=f*mj*r; S=int(int(f1,r,0,2*cos(t)),t,-pi/2,pi/2) end