過去對牛頓力學的討論都是等加速度運動 但牛頓力學最有用的是………….
運動方程式
牛頓定律加上力的描述給定運動方程式Equation of Motion,加上起使條件(起始位置與速度),便能決定此系統未來任一時間的狀態! 這是力學最重要的原則!
粒子的運動軌跡由運動方程式及起始條件完全決定,如同機械一般。 宇宙是由粒子構成! 整個宇宙就是一個巨大的機器,根據一個巨大的運動方程式運轉 力學 Mechanics 機械學
A Philosophical Essay on Probabilities[ We may regard the present state of the universe as the effect of its past and the cause of its future. An intellect which at a certain moment would know all forces that set nature in motion, and all positions of all items of which nature is composed, if this intellect were also vast enough to submit these data to analysis, it would embrace in a single formula the movements of the greatest bodies of the universe and those of the tiniest atom; for such an intellect nothing would be uncertain and the future just like the past would be present before its eyes. —Pierre Simon Laplace, A Philosophical Essay on Probabilities[ Pierre-Simon Laplace (1749–1827)
運動方程式 Equation of Motion,並不能決定唯一一個解。 必須加上起使條件(起始位置與速度),才能決定此系統未來任一時間的狀態! 只有唯一的一個解,滿足運動方程式,及起始條件! 微分方程式基本定理 只要你找到一個,無論用甚麼手段,就是它了!
自由落體運動
解微分方程式 如果沒有這個常數,起始速度只能為零。 如果沒有這個常數,起始位置只能為零。 微分方程式無法決定唯一解
解微分方程式 微分方程式無法決定唯一解 解中的兩個未定常數正好由兩個起始條件來決定: 運動方程式加上兩個起始條件就決定唯一的一個解! 這個解滿足運動方程式,以及初位置初速度兩個起始條件! 只有唯一的一個解,可以滿足運動方程式,及起始條件! 這是唯一一個解!
阻力 Fluid Resistance Force 力的方向與速度相反 速率愈大,阻力愈大 物體運動慢時(尤其是在液體中),阻力大小與速率成正比 在氣體中物體運動較快時,阻力大小會與與速率平方成正比
速度增加,阻力變大,加速度變小 直到阻力與重力抵銷時,受力為零,就不再增加,而維持等速。 終端速度 Terminal speed vt
質量越大的物體,終端速度越大! 亞里斯多德說重物掉得快,其實與日常觀察真的符合的。
阻力也是來自自原子力 原子力是由電磁力產生
阻力 Fluid Resistance Force 力的方向與速度相反 速率愈大,阻力愈大 物體運動慢時(尤其是在液體中),阻力大小與速率成正比 在氣體中物體運動較快時,阻力大小會與與速率平方成正比
向量表示式: 阻力向量與速度向量成正比!
空氣阻力大小與速度成正比時的拋體運動 垂直與水平依舊彼此獨立。
先看 x 軸分量 速度函數的微分與自己成正比! 有沒有這樣的函數?
指數函數的微分 中括號內的式子與 x 無關,可以視為一個常數 對於不同的 a,c 也會不一樣,比如a=1 時 c=0,而a很大時,c應該也很大。 那麼在a=1與a=∞之間,應該有一個a,它所對應的c=1 將此數稱為 e
Euler's number 常數 e 是一個無理數,在數學上就像 π 一樣重要,其值大概是2.71828左右。 2.71828182845904523536028747135266249775724709369995 有了e,指數函數微分就可以完全計算出來 Leonhard Euler (1707-1783)
速度函數的微分與自己成正比! 指數函數可以滿足這個性質。 因此速度為指數函數! 選擇係數 b 為正比的比例常數: 但我可以在這個解的前面乘上任一個常數C,解仍成立
常數 c 是任意數,我們似乎得到無限多組解。 速度解出 指數遞減
原子核的衰變遵守同樣的微分方程式, 我們無法預測單一一顆原子核何時及是否衰變,只能預測它衰變的機率。 λ 每單位時間衰變機率為 λ 1-λ
對單一的原子核雖然無法預測, 如果是觀測一大群原子核: 原子核的數量是可以預測的 λ即是一個原子核每秒衰變的機率! 隨時間增加以指數遞減 減少一定倍數的時間相同
細菌的生長也是類似 細菌分裂每單位時間發生的機率大致是一個常數 增加一定倍數的時間相同
阻力下的落體 y方向的速度 阻力
阻力下的落體 y方向的速度 將右方的兩項合在一起 V的行為與之前的水平速度一樣。
一般代數方程式的解通常是 No wiggle room 微分方程式的解需要刻意讓自己挪出足夠的空間與自由度,才能滿足起始條件。
乘一常數 齊次微分方程 加一常數 非齊次微分方程 微分方程式的解總是會有足夠空間來容納起始條件
物體速度稍快時,阻力與速度平方成正比 相量表示式: 阻力向量現在就不與速度向量成正比!
空氣阻力大小與速度平方成正比時的拋體運動 運動方程式: 垂直與水平不再彼此獨立。 這個方程式只能用數值方法來解:
數值方法 Numerical solution 微分是無法用電腦算的 但微分在取極限前只是一個減與除的運算
數值方法 不要讓 Δt 趨近於零,只是讓它很小! 想像時間是如下棋一樣是不連續的。 你下一步走多遠? 起始位置
你下一步走多遠? 若時間不連續,速度即平均速度,平均速度就決定位移! 下一步走多遠由起始速度決定! 起始速度
起使速度 需要速度的變化 下一步呢? 速度的變化率就是加速度,由力可以算出 決定下一部需要此時的速度 v1 力則由當時已知的位置與速度算出!
下一個速度由起始位置及起始速度可以得到 總結:由 t0 的位置與速度可以得到 t1 的位置與速度
同樣的方法可以讓我們由 t1 的位置與速度得到 t2 的位置與速度 起使速度
起使速度 於是我們得到 t2 的位置與速度
有了起始條件,以及運動方程式,我們可以以加減乘除運算,一步一步計算出系統未來的狀態! 起使速度 起始位置
流程圖看起來複雜,卻只是算術而且一直重複
不連續時間下,我們得到唯一一個解 將時間由不連續趨近連續,原則上就可以得到真正的解! 不連續時間下得到的解,就是真實解的一個近似! 這個近似可以系統性地進行改善! 起始位置 起使速度 運動方程式加上兩個起始條件就決定唯一的一個解!
阻力下的落體 阻力
實驗發現:物體速度稍快時,阻力與速度平方成正比 運動方程式: 這個方程式非常複雜。 但對電腦來說,也就是加減乘除而已! 這個方程式只能用數值方法來解:
阻力對射程的影響 射程減少近一半 最大射程仰角降低
行星系之運動 第 j 個星球對第 i 個星球的引力 Fijx yi-yj i rij Fij Fijy j xi-xj 運動方程式:
這樣的預測模式,不只適用於物理 任何系統,有了運動方程式,加上起使條件,便能決定此系統未來任一時間的狀態! 使用越精確的運動方程式,預測越準!