§1.3 条件概率 条件概率与乘法公式   引例 袋中有7只白球,3只红球,白球中有4只木球,3只塑料球;红球中有2只木球,1只塑料球.现从袋中任取1球,假设每个球被取到的可能性相同.若已知取到的球是白球,问它是木球的概率是多少? 古典概型 设 A 表示任取一球,取得白球; B 表示任取一球,取得木球.

Slides:



Advertisements
Similar presentations
小结与复习( 4 ). 1 、内容小结 互斥事件互斥事件 不对立不对立 特点特点 ⑴ A 、 B 不能同时发生, A 发生必 然 B 不发生。 ⑵事件 A+B 是随机事件 概率概率 ,又若 A 1 , A 2 , … , A n 彼此互斥,则 对立对立 特点特点 ⑴ A 、 B 不能同时发生,但必有一.
Advertisements

概率统计( ZYH ) 1.3 古典概型与几何概型 一、古典概型 二、几何概型. 概率统计( ZYH ) 回忆 1.1 节的试验, E 1,E 3,E 4 有共同特性: 一、古典概型 ①(有限性)试验的样本空间 Ω 中仅含有限个样本点: ②(等可能性)每个基本事件 {ω i } 发生的可能性相同 :
山东农业大学 概率论与数理统计 主讲人:程述汉 苏本堂 §1.3 古典概型 1. 古典概型  古典概型中事件概率的计算公式  古典概型的概率计算步骤  古典概型的概率计算举例.
1 概率论与数理统计第 3 讲 本讲义可在网址 或 ftp://math.shekou.com 下载.
§1.2 事件的概率 设在 n 次试验中,事件 A 发生了 m 次,则称 为事件 A 发生的频率. 频率 频率的性质 事件 A 、 B 互斥,则 可推广到有限个两两互斥事件的和事 件. 非负性 规范性 可加性 稳定性 某一定数    
随机变量及其概率分布 第二章 离散型随机变量及其分布律 正态分布 连续型随机变量及其分布律 随机变量函数的分布.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
10.6 随机事件的概率. 高考要求: ( 1 )了解随机事件的发生存在着规律性和意 义。 ( 2 )了解等可能事件的意义。 ( 3 )会用排列、组合公式进行计算。 考基要点: 本考点为高考热点,以选择题题型判断是否为 随机事件,以选择、填空和解答题题型计算随 机事件、等可能事件的概率。理解其实质为限.
古典概型习题课. 1 .古典概型 (1) 基本事件的特点 ①任何两个基本事件是 的. ②任何事件 ( 除不可能事件 ) 都可以表示成的和. 2 .古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1) 试验中所有可能出现的基本事件 . (2) 每个基本事件出现的可能性 . 互斥.
§1.2 §1.2随机事件的概率 0≤P(A)≤1 用一个数来度量可能性的大小。这个 数应该是事件本身所固有的,可以在相同 的条件下通过大量的重复试验予以识别和 检验;可能性大的事件用较大的数来度量, 可能性小的事件用较小的数来度量。这个 用来度量可能性大小的数称为事件的概率, 用 P(A) 表示。
第十五章 控制方法.
条件概率与乘法公式.
高二数学 选修 条件概率(一).
复习: :对任意的x∈A,都有x∈B。 集合A与集合B间的关系 A(B) A B :存在x0∈A,但x0∈B。 A B A B.
古典概型习题课.
1.4 古典概型(等可能概型) 1.古典概型 2.典型例题 3. 小结.
第二讲 加法公式乘法公式 本次课讲授第一章第2、3、4、5节; 下次课结束并总结第一章,开始讲授第二章第1节;
第二节 古典概型 (等可能概型).
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
3.1.3 概率的基本性质 事件 的关系 和运算 概率的 几个基 本性质 南海中学分校高一备课组.
3.1.3 概率的基本性质.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
《高等数学》(理学) 常数项级数的概念 袁安锋
25.2 用列举法求概率(第3课时) 保靖民中:张 强.
第二节 微积分基本定理 一、积分上限函数及其导数 二、积分上限函数求导法则 三、微积分基本公式.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
随机变量及其 概率分布.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
2-7、函数的微分 教学要求 教学要点.
1.2 事件的频率与概率 一、事件的频率 二、概率的公理化体系 1.2 事件的频率与概率.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第三章 随机事件的概率.
第二讲 数据统计与分析 秦 猛 南京大学物理系 参考教材:《概率论与数理统计》 高新祖 陈华钧 编著 南京大学出版社 1.
第一章 随机事件及其概率.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第七章 参数估计 7.3 参数的区间估计.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
实数与向量的积.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
复习.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
教师: 习长新 com 概率论与数理统计 教师: 习长新 com.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4) 若A可逆,则 也可逆, 证明: 所以.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
上杭二中 曾庆华 上杭二中 曾庆华 上杭二中 曾庆华.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
难点:连续变量函数分布与二维连续变量分布
1.3 概率的定义及其运算 ? ? 从直观上来看,事件A的概率是指事件A发生的可能性 P(A)应具有何种性质?
笛卡儿说:“数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。”
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第3讲 概率论初步 3.1 概率 条件概率和加法公式 3.3 计数原则.
Presentation transcript:

§1.3 条件概率 条件概率与乘法公式   引例 袋中有7只白球,3只红球,白球中有4只木球,3只塑料球;红球中有2只木球,1只塑料球.现从袋中任取1球,假设每个球被取到的可能性相同.若已知取到的球是白球,问它是木球的概率是多少? 古典概型 设 A 表示任取一球,取得白球; B 表示任取一球,取得木球.

  所求的概率称为在事件A 发生的条件下事件B 发生的条件概率.记为 解 列表

从而有 定义 设A、B为两事件,P ( A ) > 0,则称   为事件 A 发生的条件下事件 B 发生的条件概率,记为 条件概率的计算方法 (1) 古典概型 可用缩减样本空间法; (2) 其他概型 用定义与有关公式.

条件概率也是概率,故具有概率的性质: 非负性 ; 规范性 ; 可列可加性 ; ; ; .

乘法公式   利用条件概率求积事件的概率即乘法公式. 推广

  例1 某厂生产的灯泡能用1000小时的概率为0.8,能用1500小时的概率为0.4,求已用1000小时的灯泡能用到1500小时的概率. 解 令 A 灯泡能用到1000小时; B 灯泡能用到1500小时. 所求概率为

  例2 从混有5张假钞的20张百元钞票中任意抽出2张,将其中1张放到验钞机上检验发现是假钞.求2张都是假钞的概率. 解 令A表示“抽到2 张都是假钞”; B表示“2张中至少有1张假钞”. 则所求概率是 (而不是 !). 所以

  例3 盒中装有5个产品,其中3个一等品,2个二等品,从中不放回地取产品,每次1个,求   (1) 取两次,两次都取得一等品的概率;   (2) 取两次,第二次取得一等品的概率;   (3) 取三次,第三次才取得一等品的概率;   (4) 取两次,已知第二次取得一等品,求第一次取得的是二等品的概率. 解 令 Ai 为第 i 次取到一等品. (1)

  例3 盒中装有5个产品,其中3个一等品,2个二等品,从中不放回地取产品,每次1个,求   (1) 取两次,两次都取得一等品的概率;   (2) 取两次,第二次取得一等品的概率;   (3) 取三次,第三次才取得一等品的概率;   (4) 取两次,已知第二次取得一等品,求第一次取得的是二等品的概率. 解 令 Ai 为第 i 次取到一等品. (1)

(4)

例4 某人外出旅游两天,需知道两天的天气情况,据预报,第一天下雨的概率为0. 6,第二天下雨的概率为0. 3,两天都下雨的概率为0   例4 某人外出旅游两天,需知道两天的天气情况,据预报,第一天下雨的概率为0.6,第二天下雨的概率为0.3,两天都下雨的概率为0.1.求第一天下雨时,第二天不下雨的概率.   解 设A1与A2 分别表示第一与第二天下雨.

  一般地条件概率与无条件概率之间的大小无确定关系. 上例中 若

例5 为了防止意外,矿井内同时装有A与B两种报警设备,已知设备A单独使用时有效的概率为0. 92,设备B单独使用时有效的概率为0   例5 为了防止意外,矿井内同时装有A与B两种报警设备,已知设备A单独使用时有效的概率为0.92,设备B单独使用时有效的概率为0.93, 在设备A失效的条件下,设备B有效的概率为0.85,求发生意外时至少有一个报警设备有效的概率. 解 设事件A, B分别表示设备A, B有效. 已知 求

解法一 即 故 解法二

全概率公式与Bayes 公式 B1 Bn AB1 AB2 ABn A B2 全概率公式 Bayes公式

  例6 每100件产品为一批,已知每批产品中次品数不超过4件,每批产品中有 i 件次品的概率为: P 0.1 0.2 0.4 0.2 0.1   从每批产品中不放回地取10件进行检验,若 发现有不合格产品,则认为这批产品不合格,否则就认为这批产品合格.求   (1) 一批产品通过检验的概率;   (2) 通过检验的产品中恰有 i 件次品的概率.

  解 设一批产品中有 i 件次品为事件Bi (i = 0,1,…,4), A 为一批产品通过检验. 则 已知P( Bi )如表中所示,且 由全概率公式与Bayes 公式可计算P( A )与

结果如下表所示

  称 P( Bi ) 为先验概率,它是由以往的经验得到的,它是事件 A 的原因. 为后验概率,它 是得到了信息— A 发生,再对导致 A 发生的原因发生的可能性大小重新加以修正. 本例中, i 较小时, i 较大时,

例7 由于随机干扰,在无线电通讯中发出 信号“•”,收到信号“•”,“不清”,“—” 的概率分别为0.7,0.2,0.1;发出信号“—”, 收到信号“•”,“不清”,“—”的概率分别 为0.0,0.1,0.9.已知在发出的信号中,“•” 和“—”出现的概率分别为0.6和0.4,试分析, 当收到信号“不清”时,原发信号为“•”还是 “—”的概率哪个大?   解 设原发信号为“•”为事件 B1 ;   原发信号为“—”为事件 B2;     收到信号“不清”为事件 A.

已知:   可见,当收到信号“不清”时,原发信号为“•”的可能性大.

作业 P57 习题一 34,35,37,38,39