一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
你身边的高考专家.
碰撞 两物体互相接触时间极短而互作用力较大
第二篇 热力学统计物理.
四、麦克斯韦速率分布函数 大量分子看作小球 总分子数 N 设 为具有速度 分子数 . 有分布规律与速度有关
§5.1 理想气体的压强 【演示】气体压强模拟 一、理想气体的微观假设 1、关于每个分子力学性质的假设
· · §6-5 麦克斯韦速率分布律 一. 分布的概念 问题的提出 年龄
§18.3 M-B 统计在理想气体中的应用 重点:将M-B统计应用于理想气体得出的几个统计规律 一、麦克斯韦分子速率分布定律
第12章 气体动理论 扫描隧道显微镜(STM).
第七章 气体动理论 7.6 气体分子速率的分布规律.
第12章 气体动理论 热现象是在自然界中是十分普遍的,它是大量分子不规则运动的宏观表现,要认识热现象的本质,必须研究分子的微观运动。
第二章 分子动理学理论的平衡态理论 §2.1 分子动理学理论与统计物理学 §2.2 概率论的基本知识 §2.3 麦克斯韦速率分布
例7-1 荡木用两条等长的钢索平行吊起,钢索的摆动规律为j= j 0sin(pt/4)。试求当t=0和t=2s时,荡木中点M的速度和加速度。
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第四章 定积分及其应用 4.3 定积分的概念与性质 微积分基本公式 定积分的换元积分法与分部积分法 4.5 广义积分
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
不确定度的传递与合成 间接测量结果不确定度的评估
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第七章 气体动理论.
拓展 问题 探究 练习 北师大版 五年级上册 第五单元 分数的意义 绿色圃中小学教育网
第二章 气体动理论.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
第三节 Gas Transport in the blood 气体在血液中的运输
Μ子寿命测量 王纬臻 合作者 吴泽文 指导老师:乐永康.
第四章 分子动理论 4-1 分子动理论的基本观点 一.分子热运动的基本特征 宏观物体是由大量微观粒子组成的。
气体动理论 热 学 第 8 章 (Thermodynamics) (6)
本节内容 平行线的性质 4.3.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
专项考能集训(四)  碱基含量及DNA复制有关的计算.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第四章 一次函数 4. 一次函数的应用(第1课时).
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
6.4 你有信心吗?.
激光器的速率方程.
第三单元 第2课 实验 一元函数的积分 实验目的:掌握matlab求解有关不定积分和定积分的问题,深入理解定积分的概念和几何意义。
第15章 量子力学(quantum mechanics) 初步
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
利用DSC进行比热容的测定 比 热 容 测 量 案 例 2010.02 TA No.036 热分析・粘弹性测量定 ・何为比热容
北师大版 五年级上册 第五单元 分数的意义 拓展 问题 探究 练习.
第二章 均匀物质的热力学性质 基本热力学函数 麦氏关系及应用 气体节流和绝热膨胀.
2019/5/20 第三节 高阶导数 1.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
热力学第一定律的应用 --理想气体等容过程、定容摩尔热容 --理想气体等压过程 、定压摩尔热容.
难点:连续变量函数分布与二维连续变量分布
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
FH实验中电子能量分布的测定 乐永康,陈亮 2008年10月7日.
热力学与统计物理 金晓峰 复旦大学物理系 /7/27.
B12 竺越
题解: P120 5——8 V3=100m/S Ρ=1.29×10-3g/cm3 P3-P2=1000Pa.
题解: P120 5——8 V3=100m/S Ρ=1.29×10-3g/cm3 P3-P2=1000Pa.
知识回顾.
Presentation transcript:

一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵

分子速率分布图 :分子总数 为速率在 区间的分子数. 表示速率在 区间的分子数占总数的百分比 .

分布函数 表示在温度为 的平衡状态下,速率在 附近单位速率区间 的分子数占总数的百分比 . 物理意义 表示速率在 区间的分子数占总分子数的百分比 . 归一化条件

速率位于 内分子数 速率位于 区间的分子数 速率位于 区间的分子数占总数的百分比

二 麦克斯韦气体速率分布定律 麦氏分布函数 反映理想气体在热动 平衡条件下,各速率区间 分子数占总分子数的百分 比的规律 .

三 三种统计速率 1)最概然速率 根据分布函数求得 气体在一定温度下分布在最概然速率 附近单位速率间隔内的相对分子数最多 . 物理意义

2)平均速率

3)方均根速率

N2 分子在不同温度下的速率分布 同一温度下不同气体的速率分布

(A) 是气体分子中大部分分子所具有的速率. (B) 是速率最大的速度值. (C) 是麦克斯韦速率分布函数的最大值. 讨论 麦克斯韦速率分布中最概然速率 的概念 下面哪种表述正确? (A) 是气体分子中大部分分子所具有的速率. (B) 是速率最大的速度值. (C) 是麦克斯韦速率分布函数的最大值. (D) 速率大小与最概然速率相近的气体分子的比 率最大.

例 计算在 时,氢气和氧气分子的方均根速率 . 氢气分子 氧气分子

例 已知分子数 ,分子质量 ,分布函数 求 1) 速率在 间的分子数; 2)速率 在 间所有分子动能之和 . 速率在 间的分子数 1) 2)

氧气在同一温度下的麦克斯韦速率分布曲线, 从图 上数据求出氢气和氧气的最可几速率 . 例 如图示两条 曲线分别表示氢气和 氧气在同一温度下的麦克斯韦速率分布曲线, 从图 上数据求出氢气和氧气的最可几速率 . 2000