第三章 热力学第一定律.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
人体在生命活动过程中需要能量, 能量主要来源于食物。 他们健康吗? 人体内能量的平衡与调节 奉城二中 徐玉.
二、特定人群的膳食指南  特定人群主要包括七方面人群:  婴儿  幼儿与学龄前儿童  学龄儿童  青少年  孕妇  乳母  老年 人.
古代汉语(上).
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
碰撞 两物体互相接触时间极短而互作用力较大
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
第一章 热力学第一定律.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 热力学第一定律 (First law of thermodynamics) (火力发电厂外貌)
第五章:热力学定律 第3节 热力学第二定律.
工 程 热 力 学 是一门研究热能有效利用及 热能和其它形式能量转换规律 的科学.
多媒体教学课件 华北电力大学 能源与动力工程学院
第一章 基本概念.
第一篇 工程热力学 第一章 基本概念 第二章 热力学第一定律 第三章 理想气体及其混合物 第四章 理想气体的热力过程 第五章 热力学第二定律
新人教版初中物理九年级下 多档位电热器的电路分析与判断 夏湾中学 孙玥.
专题五 文言文翻译和断句——巧抓文句信息翻译断句
第一章 液压传动系统的基本组成 蓄能器 1 功用 (1)辅助动力源,短时大量供油 特点: 采用蓄能器辅助供油,可以减小泵的流量,电机的功率,降低系统的温升。
第一章 基本概念.
{范例8.8} 卡诺循环图 为了提高热机的效率,1824年法国青年工程师卡诺从理论上研究了一种理想循环:卡诺循环。这就是只与两个恒温热源交换热量,不存在漏气和其他热耗散的循环。 如图所示,理想气体准静态卡诺循环在p-V图上是两条等温线和两条绝热线所围成的封闭曲线。理想气体由状态a出发,先经过温度为T1的等温膨胀过程a→b,再经过绝热膨胀过程b→c,然后经过温度为T2的等温压缩过程c→d,最后经过绝热压缩过程d→a,气体回到初始状态。
工程热力学课件 华北电力大学(北京) 动力工程系 工程热物理教研室制作 2005年5月.
作业
系统 控制体 输运公式 1. 系统(system)——由确定的流体质点组成的流体团或流体体积V(t)。
热力学基础 热力学第一定律 内能 功 热量.
全威圖書有限公司 C0062.
第2章 Z变换 Z变换的定义与收敛域 Z反变换 系统的稳定性和H(z) 系统函数.
光学谐振腔的损耗.
华北电力大学(北京) 动力工程系 工程热物理教研室制作 2005年5月
第四章 气体和蒸汽的基本热力过程 4-1 理想气体的可逆多变过程 4-2 定容过程 4-3 定压过程 4-4 定温过程 4-5 绝热过程
第三章 热力学第一定律 Chapter 3. The first law of thermodynamics
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
元素替换法 ——行列式按行(列)展开(推论)
第一章 化学反应与能量 第一节 化学反应与能量的变化.
工程热力学课件 华北电力大学(北京) 动力工程系 工程热物理教研室制作 2005年5月.
第二章 热力学第一定律 First law of thermodynamics
功與能量的轉換 當外力對物體作功時, 會增加物體的位能或動能 功: 重力位能: 動能:
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
ATP SLYTYZJAM.
过程自发变化的判据 能否用下列判据来判断? DU≤0 或 DH≤0 DS≥0.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
3.8.1 代数法计算终点误差 终点误差公式和终点误差图及其应用 3.8 酸碱滴定的终点误差
第五章 热力学基础.
3. 分子动力学 (Molecular Dynamics,MD) 算法
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
第四章 热力学基础 物理学. 本章概述 一、什么是热学? 研究物质处于热状态下有关性质和规律的物理学分支学科。 二、研究方法
激光器的速率方程.
第九章 气体和蒸汽的流动 工质流动所具有的宏观动能在工程上占有非常重要的地位。
准静态过程 功 热量.
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
第三章 热力学第一定律.
利用DSC进行比热容的测定 比 热 容 测 量 案 例 2010.02 TA No.036 热分析・粘弹性测量定 ・何为比热容
2.2矩阵的代数运算.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
第二章 均匀物质的热力学性质 基本热力学函数 麦氏关系及应用 气体节流和绝热膨胀.
第十章 机械的摩擦、效率与力分析 Mf = F21r =fvQr F21=fN21=fQ/sinθ=fvQ
第二章 理想气体的热力性质.
热力学验证统计物理学,统计物理学揭示热力学本质
核能发电技术 主讲:韩奎华 山东大学能源与动力工程学院.
热力学第一定律的应用 --理想气体等容过程、定容摩尔热容 --理想气体等压过程 、定压摩尔热容.
§3 热力学第二定律 (second law of thermodynamics)
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第十一章 物理学与能源技术.
2.2 热力学 内能 功 热量 内能 热力学系统内所有分子热运动的能量(分子的平动、转动与振动的能量)和分子间相互作用的势能。不包括系统整体的机械能。 内能是状态量 理想气体的内能是温度的单值函数.
本底对汞原子第一激发能测量的影响 钱振宇
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
Presentation transcript:

第三章 热力学第一定律

本章目录 3.1 热力学能和总能 3.2 系统与外界传递的能量 3.3 闭口系能量方程 3.4 开口系统稳定流动能量方程  3.2 系统与外界传递的能量 3.3  闭口系能量方程 3.4 开口系统稳定流动能量方程 3.5 稳定流动能量方程式的应用 3.6 理想气体内能变化计算 3.7 理想气体焓变化的计算 3.8 理想气体s的计算

1、热力学能(内能)U 注意: 对理想气体u=f (T) 3.1 热力学能和总能 U : 广延参数 [ kJ ] 分子位能(相互作用): f(v) 核能 : 原子核内部的能量 化学能:维持一定分子结构的能量 。 √ √ × × 注意: 对理想气体u=f (T) 说明: 内能是状态量 U : 广延参数 [ kJ ] u = U /m: 比参数 [kJ/kg]  内能总以变化量出现,内能零点人为定

2、外部储存能 宏观动能: (J) 组成 (J) 重力位能: 工质宏观运动的速度 工质在重力场中的高度

3、系统总能 E = U + Ek + Ep (J) e = u + ek + ep (J/kg) 外部储存能: 宏观动能 Ek= mc2/2 宏观位能 Ep= mgz 系统总能: E = U + Ek + Ep (J) e = u + ek + ep (J/kg)

 3.2 系统与外界传递的能量 热量 系 统 外界热源 功 外界功源 随物质传递的能量 外界质源

在温差作用下,系统与外界通过界面传递的能量。 1、热量 定义: 在温差作用下,系统与外界通过界面传递的能量。 规定: 系统吸热热量为正,系统放热热量为负 单位: kJ 或 kcal 且l kcal=4.1868kJ   特点: 是传递过程中能量的一种形式,与热力过程有关 , 是过程量。

2、功 除温差以外的其它不平衡势差所引起的系统与外界传递的能量. (2)膨胀功W: (1)定义: 在力差作用下,通过系统容积变化与外界传递的能量。是过程量。 单位:l J=l N.m 规定: 系统对外作功为正,外界对系统作功为负。 例如: 定容过程: W=0 q=0 工质膨胀能对外做功,但也可以 没有功的输出: 真空

(3)轴功Ws: 通过机械轴与外界传递的机械功ws。 Ws的正负:系统输出轴功, Ws为正; 外界向系统输入轴功, Ws为负。 轴功来源于: 能量的转换。如汽轮机中热能→机械能 机械能的直接传递:如水轮机、风车等

①定义:为推动流体通过控制体界面而传递的机械功. 3、随物质传递的能量 (1)流动工质 本身具有的能量: (2)流动功(或推动功) ①定义:为推动流体通过控制体界面而传递的机械功.

w推= pv ②推动功的表达式(p45图3-2) W推 = p A l = pV 由泵、风机等提供 可理解为:由于工质的进出,外界与系统之间所传递的一种机械功,表现为流动工质进出系统所携带和所传递的一种能量。 推动功只有在工质流动时才有,当工质不流动时,虽然工质也具有一定的状态参数p和v,但这时的乘积并不代 表推动功。 由泵、风机等提供

③推动1kg工质进、出控制体时所需净流动功。

4、焓 (1)焓的定义式: 焓=热力学能+流动功 对于1千克工质: h=u+ p v 对于m千克工质: 是状态参数? (2)焓的物理意义: 对流动工质(开口系统),表示沿流动方向传递 的总能量中,取决于热力状态的那部分能量. 即热力学能和推动功之和。 对不流动工质(闭口系统),焓只是一个复合状态参数 思考:特别的对理想气体 h= f (T)?

3.3 闭口系能量方程— 热力学第一定律基本表达式 3.3  闭口系能量方程— 热力学第一定律基本表达式 1、热力学第一定律及其实质 实质:能量守恒定律在热力学中的应用。 表述内容: (1) 热力学第一定律说明:在能量的转换过程中,能量的数量保持不变,要获得部分功就必须消耗一定的能量。 所以不消耗能量而连续作功的第一类永动机是不可能实现的。 所以也可以表述为: (2)第一类永动机是造不成的。 15

⑶热力学第一定律还可以表述为:  加入系统的能量总和-热力系统输出的能量总和= 系统总储存能的增量

3.3 闭口系能量方程— 热力学第一定律基本表达式 3.3  闭口系能量方程— 热力学第一定律基本表达式 2、推导过程  加入系统的能量总和-热力系统输出的能量总和= 系统总储存能的增量 忽略宏观动能Ek和位能Ep的变化 , 可得: mkg工质经过有限过程 适用于任何工质和任何过程 17

(4)闭口系统能量方程是代数方程,功、热量、热力学能有规定。 3、讨论: 1kg工质经过有限过程 (1)其他形式: 1kg工质经过微元过程 mkg工质经过微元过程 (2)对于可逆过程 (3)物理意义 (4)闭口系统能量方程是代数方程,功、热量、热力学能有规定。 举例:见备课本。 18

例 1:自由膨胀 如图, 抽去隔板,求 解:取A、B中的气体为热力系  —闭口系?开口系? ? 强调:功是通过边界传递的能量。 19

3.4 开口系统稳定流动能量方程 1、稳定流动 (1)定义:是指热力系统在任意截面上工质的一切参数 都不随时间变化 注意:区分各截面间参数可不同。 20

(2)稳定流动条件: 2、稳定流动能量方程 进出口处工质状态不随时间变化。 进出口处工质流量相等,且不随时间改变。 满足质量守恒. 系统与外界交换的热量与功量不随时间改变,满足能量守恒。 2、稳定流动能量方程 21

(1)推导过程 进入系统的能量: 流出系统的能量: 系统内部储能增量: dECV  考虑到稳流特征: dECV=0,

(对mkg工质) ——开口系统稳定流动方程 (对1kg工质) 适用范围:任何过程,任何工质。 23

(2)稳定能量方程式分析与讨论: ①物理意义: 在稳定流动中,对开口系的加热量,一部分使工质焓增加,一部分使工质的宏观动能和宏观位能增加,并对外输出轴功。 24

技术上可资利用的功 wt ②技术功(technical work)— 对稳定流动可逆过程: 等效。 开口系稳定能量方程也可看成是流经开口系的一定质量的工质的能量方程。闭口系能量方程也是描述一定质量的工质在热力过程中的能量转换关系的。 等效。

③第一定律第二解析式 26

3.5 稳定流动能量方程式的应用 1.蒸汽轮机、汽轮机 :主要功能是对外输出轴功 (steam turbine、gas turbine) 1.蒸汽轮机、汽轮机 :主要功能是对外输出轴功 (steam turbine、gas turbine) 工质在动力机中所作的轴功等于工质的焓降 27

2、压气机 compressors and pumps 工质在压气机中绝热压缩所消耗的轴功等于压缩工质焓的增加。 压缩气体有广泛的用途:如压缩空气可以作为动力,可以驱动各种风动机械,如气钻、气锤。常用于车辆制动、门窗开闭;人工制冷:如氨、氟里昂的压缩。

(heat exchanger: boiler、heater) 3、换热器(锅炉、加热器等) (heat exchanger: boiler、heater) 实现冷热流体的热交换。 29

3、换热器(锅炉、加热器等) 在锅炉等换热设备中,工质吸收的热量等于工质焓的增加。 或者:工质放出的热量等于工质焓的减少。

4、喷管 (Nozzles and Diffusers :降压增速) 在喷管中气流动能增量等于工质焓降。 喷管在工程上主要用于需要增速或需要降压的场合,如航空涡轮喷气发动机的尾喷管、火箭发动机的喷管就是利用收缩或缩放喷管将进口的高温高压燃气降温降压以获得出口高速的。

5、混合流 混合过程是工程上最常见的热力过程之一,两种以上流体都要采用这种方式,一般是已知混合前的参数,求混合后的混合物参数。 32

6、绝热节流:节流阀的使用在于调节工质流动的压力、流量或温度 [Throttling Devices (adiabatic process) ]          节流:工质在管内流过阀门、孔板、小孔等使流通截面突然缩小的装置时,会在缩口附近产生强烈的漩涡,从而产生所谓“局部阻力”,使压力下降,这种现象称为“节流”。 绝热节流:节流过程进行得很快。 绝热节流前、后焓相等,但由于在节流孔口附近流体的流速变化很大,焓值并不处处相等,不能把整个过程看作是定焓过程。

运用热一律分析问题时,经常用到一些假设和规律 (1)分析化简首先要抓住热力设备和装置的用途。 例如: 动力机的主要功能是对外输出轴功; 换热器的目的在于实现冷热流体的热交换; 节流阀的使用在于调节工质流动的压力、流量或温度。 (2)流速较快的过程可按绝热处理。 (3)除喷管和扩压管外,动能位能的变化常忽略。 ⑷过程进行缓慢时,可认为系统和外界随时处于热平衡。 举例:教材p58-62:例3-5,例3-7

3.6 理想气体内能变化计算 1、计算公式: (3)理想气体组成的混合气体的内能: 2、说明 3.6 理想气体内能变化计算 2、说明 1、计算公式: (1)适用于理想气体一切过程或者实际气体定容过程 。 (3)理想气体组成的混合气体的内能:

3.7 理想气体焓的计算 1、计算公式: 2、说明 或实际气体的定压过程, (2)理想气体组成的混合气体的焓: ⑴适用于理想气体的一切热力过程 或实际气体的定压过程, 1、计算公式: (2)理想气体组成的混合气体的焓:

(3) (4) cp 为真实比热 (5) cp 为平均比热

3.8 理想气体s的计算

本章作业 思考题:3-6、3-10 习题:3-1、3-6、3-8、3-10、3-13 3-17、3-19