第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)

Slides:



Advertisements
Similar presentations
简单迭代法的概念与结论 简单迭代法又称逐次迭代法,基本思想是构造不动点 方程,以求得近似根。即由方程 f(x)=0 变换为 x=  (x), 然后建立迭代格式, 返回下一页 则称迭代格式 收敛, 否则称为发散 上一页.
Advertisements

1 §2.2 离 散 型 随 机 变 量 §2.1 随 机 变 量 的 概 念 §2.3 超几何分布 · 二项分布 · 泊松分布 1. “0-1” 分布 ( 两点分布 ) 3. 二项分布 4. Poisson 分布 2. 超几何分布 n →∞ , N→∞ , (x = 0, 1, 2, , n) (x.
版 画 制 作版 画 制 作 版 画 种 类版 画 种 类 版 画 作 品版 画 作 品 刘承川.
随机变量及其概率分布 第二章 离散型随机变量及其分布律 正态分布 连续型随机变量及其分布律 随机变量函数的分布.
歐亞書局 微積分 精華版 [ 第九版 ] 微分量與邊際分析 4.8. 歐亞書局 4.8 微分量與邊際分析 學習目標  求函數的微分量。  以微分量來估算函數的變化量。  以微分量來估算在現實生活模型的變化量。 P.4-62 第四章 導數的應用.
1.2 偏导数与全微分 偏导数的概念 解 偏导数的求法(类似一元函数) ( 1 )固定一个变量,对另一个变量用一元函 数的公式法则求导.
1.3 二项式定理. [ 题后感悟 ] 方法二较为简单,在展开二项式之前根据二项 式的结构特征进行适当变形,可使展开多项式的过程简化.记 准、记熟二项式 (a + b) n 的展开式,是解答好与二项式定理有关 问题的前提,对较复杂的二项式,有时可先化简再展开,会更 简便.
政治全球化 促進國際間的了解, 抑或加劇了種族、宗教、文化和政 治實體之間的衝突 ?. 政治全球化 指一個國家或國際的政治事務,由一國或少數國家決定的模 式,逐漸過渡至複雜的跨國以至全球決策模式 政治活動和政治決策跨越國家界限.
全国青少年科技创新大赛 科技辅导员项目组织与实施
专利技术交底书的撰写方法 ——公司知识产权讲座
第八章 收益分配决策补:案例,习题 本章结构、主要内容、重点难点: 收益分配的原则;程序 收益分配的政策: 影响股利的因素 股利政策的种类
考点作文十大夺魁技法 第28课时 写作(二) 考点作文十大夺魁技法 6-10 ·新课标.
湖南省科学技术奖励 推荐工作要求.
二次函數 高士欽 林國源.
舊石器時代 位置: 亞洲大陸東緣,西太平洋弧狀列島一部份 背景 形成: 兩千多萬年前逐漸隆起,形成島嶼 生物: 大角鹿、猛瑪象、亞洲大陸原始人 臺東 長濱文化 苗栗 網形文化 臺南 左鎮人目前臺灣發現最早人類化石 代表 文化 1.住在海邊洞穴-短期定居小型隊群 2.以採集、狩獵為生 3.使用礫石砍伐器、片器、尖器.
第二章:随机变量 上节课内容 本节课内容 概率理论 随机变量及其分布 随机变量变换 常见分布族 多元随机向量的分布 概率公理及推论
在系統完成資料填報後 系統產生所有表件請全數印出 如下載的表件為「空白」文件,請安裝PDF中文字型 ★系統參考畫面:
五年級上學期 體育課教學方案 設計者:吳文芳.
广东省高新技术企业培育库入库企业认定(第二批)工作介绍
文学名作与影视改编 郁达夫文学作品及相关影视赏析 授课教师 胡芳.
四种命题 班级:C274 指导教师:钟志勤 任课教师:颜小娟.
甄選入學招生 第二階段集體及個別報名系統 系統開放時間:102/6/3 10:00~ 102/6/7 17:00止
增值评价 2014级 初中起点报告 解读培训 辽宁省基础教育质量监测与评价中心.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
§5.3 定积分的换元法 和分部积分法 一、 定积分的换元法 二、 定积分的分部积分法 三、 小结、作业.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
田明泉 从山东省高考数学试题变化 看2013年二轮复习 田明泉
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
关注空巢老人的心理健康 525宿舍.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
3.1.3几种常见函数的导数 高二数学 选修1-1.
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
概 率 统 计 主讲教师 叶宏 山东大学数学院.
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
实验数据处理方法 王永刚.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
抽樣分配 Sampling Distributions
全文检索 墨香简介 平台功能 产品优势 产品对比
概 率 统 计 主讲教师 叶宏 山东大学数学院.
应用概率统计 主讲:刘剑平.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
中汇会计师事务所(特殊普通合伙)无锡分所
107年 國中教育會考 准考證資料處理系統 學校版 (集體報名單位) 操作說明
108新課綱教學目標與特色 (一)強化務實致用 (二)落實課程連貫 (三)深化基本職能 (四)符應產業需求 考招連動配套 部定實習科目
二次函數的圖形的探討 一次函數與二次函數的定義 一次函數的圖形 二次函數的圖形.
在第一章中,我们介绍了条件概率的概念 . 在事件B发生的条件下事件A发生的条件概率 推广到随机变量
第四章 不定积分 第一节 不定积分的概念与性质 一、原函数与不定积分 二、不定积分的基本性质 三、不定积分的性质 四、不定积分的几何意义.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第三章 多元随机变量及其分布 关键词:二元随机变量 联合分布 边际分布 条件分布 随机变量的独立性 随机变量函数的分布.
統計學回顧 區國強.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第三章 多维随机变量及其分布 第一节 二维随机变量 第二节 边缘分布 第三节 条件分布 第四节 相互独立的随机变量
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
鋼液冶煉製程介紹.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
随机变量函数的分布.
認識函數.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
难点:连续变量函数分布与二维连续变量分布
新疆维吾尔自治区高校科研计划项目网络管理平台项目申报操作指南
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
新疆维吾尔自治区高校科研计划项目网络管理平台项目申报操作指南
大學考招新方案與銜接配套措施 【十二年國民基本教育課程綱要宣講】 教育部 大學招生委員會聯合會 108 年 9月.
教師檔案系統資料如何填寫? 如何對應教師評鑑共同基準?.
Presentation transcript:

第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions) Monte Carlo模拟 第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions) 3.2 pdf的变换 2019/7/13 第三章 从概率分布函数的抽样

3.2 pdf的变换 x: 连续型的随机变量, PDF: f(x) y = y(x):x的函数, 也是随机变量. 求y(x)的概率密度函数g(x) 1、若随机变量x和y是一一对应的: [x, x+dx][y, y+dy] X的取值在[x, x+dx]的概率==Y的取值在[y, y+dy]的概率: 取绝对值是为了保证g(y)是非负的 f(x)dx=g(y)dy  2、若随机变量x和y不是一一对应的: 即有n个区间[x,x+dx][y,y+dy] 需要对这n个区间求和 2019/7/13 第三章 从概率分布函数的抽样

3.2 pdf的变换 3、推广到n个随机变量的情况: Jacobian行列式 4、特例:如果y(x)是x的累积分布函数(cdf) 即:y在[0,1]区间上均匀分布  不管f(x)取何种形式, 累积分布函数总是在[0,1]区间上均匀分布 2019/7/13 第三章 从概率分布函数的抽样