23.2二次函数y=ax2的图象和性质.

Slides:



Advertisements
Similar presentations
6.2 二次函数图象和性质 (1) 1 、函数 y = x 2 的图像是什么样子呢 ? 2 、如何画 y=x 2 的图象呢 ?
Advertisements

《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
圆锥曲线复习.
二次函数中的存在性问题(平行四边形).
第二章 二次函数 第二节 结识抛物线
26.2用函数观点看一元二次方程.
俄罗斯方块:注意观察游戏中用到的 数学的知识
一次函数的图象复习课 南华实验学校 初二(10)班 教师:朱中萍.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
利用定积分求平面图形的面积.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
初中数学 九年级(下册) 5.2 二次函数的图像和性质(4).
同学们好! 肖溪镇竹山小学校 张齐敏.
义务教育教科书(北师)九年级数学下册 第二章 二次函数 二次函数与一元二次方程的关系.
二次函数 复习课
人教版26.1.4二次函数y=ax2+bx+c 的图象 x y o 中学数学网(群英学科)收集提供.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
余弦函数的图象与性质 各位老师好! X.
2.1.2 指数函数及其性质.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
本节内容 平行线的性质 4.3.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
一次函数的图像和性质 y x.
2.6 直角三角形(二).
1.5 函数y=Asin(ωx+φ)的图象.
北师大版八年级(上) 第五章 位置的确定 5.2 平面直角坐标系(3).
第四章 一次函数 4. 一次函数的应用(第1课时).
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
一个直角三角形的成长经历.
3.3 垂径定理 第2课时 垂径定理的逆定理.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
抛物线的几何性质.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
第二章 二次函数 第八节 二次函数与一元二次方程(一)
直线和圆的位置关系 ·.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
双曲线的性质.
4.二次函数y=ax2+bx+c的图象(2) y=ax2+bx+c的图象和性质
一元二次不等式解法(1).
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
1.4.3正切函数的图象及性质.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
幂 函 数.
人教A版 必修一 3.1·函数与方程 方程的根与函数的零点.
正弦函数的性质与图像.
23.6 图形与坐标 图形的变换与坐标
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
1.4.2 正弦函数、 余弦函数的性质.
24.4弧长和扇形面积 圆锥的侧面积和全面积.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
****九年级数学组汇报教学 课题:§ 锐角三角函数 授课教师: 授课班级:九○三班.
二次函数y=ax2的图象和性质.
用待定系数法求二次函数的解析式.
1.2轴对称的性质 八 年 级 数 学 备 课 组.
反比例函数(复习课) y o x 常州市新北区实验中学 高兴林.
反比例函数(二) y o x.
三角 三角 三角 函数 余弦函数的图象和性质.
1.4.1正弦函数、余弦函数的图象.
位似.
苏教版三年级数学 上册 轴对称 高效课堂编写组 高向玲.
正弦函数、余弦函数的图象与性质 授课者:章咏梅.
1.4.1正弦函数、余弦函数的图象.
九年级上册 第二十二章 二次函数 二次函数    的 图象和性质 北京市中关村中学 杨爱青.
函数与方程 更多模板请关注:
一元一次方程的解法(-).
Presentation transcript:

23.2二次函数y=ax2的图象和性质

1、会用描点法画二次函数y=x2和y=-x2的图象; 驶向胜利的彼岸 有的放矢 2 学习目标 1、会用描点法画二次函数y=x2和y=-x2的图象; 2、根据函数y=x2和y=-x2的图象,直观地了解它的性质.

数形结合,直观感受 在二次函数y=x2中,y随x的变化而变化的规律是什么? 你会用描点法画二次函数y=x2的图象吗? 有的放矢P38 1 数形结合,直观感受 在二次函数y=x2中,y随x的变化而变化的规律是什么? 你会用描点法画二次函数y=x2的图象吗? 观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表: x y=x2 … 9 4 1 x … -3 -2 -1 1 2 3 y=x2 x y=x2

描点,连线 x y -4 -3 -2 -1 1 2 3 4 10 8 6 y=x2 ?

y=x2 (1)你能描述图象的形状吗?与同伴进行交流. -4 -3 -2 -1 1 2 3 4 10 8 6 y=x2 (1)你能描述图象的形状吗?与同伴进行交流. (2)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流. (3)图象 与x轴有交点吗?如果有,交点坐标是什么? (4)当x<0时,随着x的值增大,y 的值如何变化?当x>0呢? (5)当x取什么值时,y的值最小?最小值是什么?你是如何知道的?

二次函数y=x2的 图象形如物体抛射 时所经过的路线,我 们把它叫做抛物线. 对称轴与抛物 线的交点叫做 抛物线的顶点. 这条抛物线关于 y轴对称,y轴就 是它的对称轴.

当x<0 (在对称轴的 左侧)时,y随着x的增大而 减小. 当x>0 (在对称轴的 右侧)时, y随着x的增大而 增大. 抛物线y=x2在x轴的 上方(除顶点外),顶点 是它的最低点,开口 向上,并且向上无限 伸展;当x=0时,函数y 的值最小,最小值是0. 当x= -2时,y=4 当x= -1时,y=1 当x=1时,y=1 当x=2时,y=4

在学中做—在做中学 做一做P40 4 (1)二次函数y=-x2的图象是什么形状? (2)它与二次函数y=x2的图象有什么关系? x … -9 驶向胜利的彼岸 做一做P40 4 在学中做—在做中学 (1)二次函数y=-x2的图象是什么形状? (2)它与二次函数y=x2的图象有什么关系? x … -9 -4 -1 x … -3 -2 -1 1 2 3 y=-x2 x y=-x2 你能根据表格中的数据作出猜想吗?

? 描点,连线 y=-x2 5 做一做P40 y 2 -4 -3 -2 -1 1 2 3 4 x -1 -2 -4 -6 -8 -10 驶向胜利的彼岸 做一做P40 5 y 描点,连线 2 -4 -3 -2 -1 1 2 3 4 x -1 -2 -4 -6 ? -8 y=-x2 -10

描点,连线 y=-x2 观察图象,回答问题串 6 (1)你能描述图象的形状吗?与同伴进行交流. 驶向胜利的彼岸 观察图象,回答问题串 做一做P40 6 x y -4 -3 -2 -1 1 2 3 4 -10 -8 -6 描点,连线 (1)你能描述图象的形状吗?与同伴进行交流. (2)图象 与x轴有交点吗?如果有,交点坐标是什么? (3)当x<0时,随着x的值增大,y 的值如何变化?当x>0呢? (4)当x取什么值时,y的值最大?最大值是什么?你是如何知道的? y=-x2 (5)图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点,并与同伴交流.

y 二次函数y= -x2的 图象形如物体抛射 时所经过的路线,我 们把它叫做抛物线. 对称轴与抛物 线的交点叫做 抛物线的顶点. 这条抛物线关于 y轴对称,y轴就 是它的对称轴.

抛物线y= -x2在x轴的 下方(除顶点外),顶点 是它的最高点,开口 向下,并且向下无限 伸展;当x=0时,函数y 的值最大,最大值是0. 增大. 当x>0 (在对称轴 的右侧)时, y随着 x的增大而减小. 抛物线y= -x2在x轴的 下方(除顶点外),顶点 是它的最高点,开口 向下,并且向下无限 伸展;当x=0时,函数y 的值最大,最大值是0. 当x= -2时,y= -4 当x= -1时,y= -1 当x=1时,y= -1 当x= 2时,y= -4

做一做P40 7 看图说话 函数y=ax2(a≠0)的图象和性质: y x x y y=x2 它们之间有何关系? ? y=-x2

二次函数y=ax2的性质 1.顶点坐标与对称轴 2.位置与开口方向 3.增减性与最值 根据图形填表: 抛物线 y=x2 y= -x2 (0,0) 顶点坐标 (0,0) y轴 对称轴 y轴 位置 在x轴的上方(除顶点外) 在x轴的下方( 除顶点外) 开口方向 向上 向下 在对称轴的左侧,y随着x的增大而减小. 在对称轴的右侧, y随着x的增大而增大. 在对称轴的左侧,y随着x的增大而增大. 在对称轴的右侧, y随着x的增大而减小. 增减性 最值 当x=0时,最小值为0. 当x=0时,最大值为0.

y=x2和y=-x2是y=ax2当a=±1时的特殊例子.a的符号确定着抛物线的…… 驶向胜利的彼岸 做一做P40 8 看图说话 函数y=ax2(a≠0)的图象和性质: x y 在同一坐标系中作出函数y=x2和y=-x2的图象 y=x2 y=x2和y=-x2是y=ax2当a=±1时的特殊例子.a的符号确定着抛物线的…… y=-x2

二次函数y=ax2的性质 1.抛物线y=ax2的顶点是原点,对称轴是y轴. 2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展; 当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展. 3.当a>0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小. 当a<0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.

? 我思,我进步 例题欣赏P40 9 1.已知抛物线y=ax2经过点A(-2,-8). (1)求此抛物线的函数解析式; 驶向胜利的彼岸 例题欣赏P40 9 我思,我进步 1.已知抛物线y=ax2经过点A(-2,-8). (1)求此抛物线的函数解析式; (2)判断点B(-1,- 4)是否在此抛物线上. (3)求出此抛物线上纵坐标为-6的点的坐标. 解(1)把(-2,-8)代入y=ax2,得 -8=a(-2)2, 解得a= -2,所求函数解析式为y= -2x2. (2)因为 ,所以点B(-1 ,-4) 不在此抛物线上. ? (3)由-6=-2x2 ,得x2=3, 所以纵坐标为-6的点有两个,它们分别是

驶向胜利的彼岸 例题欣赏P40 8 知道就做别客气 2.填空:(1)抛物线y=2x2的顶点坐标是 ,对称轴是 ,在 侧,y随着x的增大而增大;在 侧,y随着x的增大而减小,当x= 时,函数y的值最小,最小值是 ,抛物线y=2x2在x轴的 方(除顶点外). (0,0) y轴 对称轴的右 对称轴的左 上 (2)抛物线 在x轴的 方(除顶点外),在对称轴的 左侧,y随着x的 ;在对称轴的右侧,y随着x的 ,当x=0时,函数y的值最大,最大值是 , 当x 0时,y<0. 下 增大而增大 增大而减小

回味无穷 由二次函数y=x2和y=-x2知: 小结 拓展 1.抛物线y=ax2的顶点是原点,对称轴是y轴. 驶向胜利的彼岸 小结 拓展 回味无穷 由二次函数y=x2和y=-x2知: 1.抛物线y=ax2的顶点是原点,对称轴是y轴. 2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展; 当a<0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展. 3.当a>0时,在对称轴的左侧,y随着x的增大而减小; 在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小. 当a<0时,在对称轴的左侧,y随着x的增大而增大; 在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.

习题23.2 1,2题 独立 作业 1.说说自己生活中遇到的哪些动物和植物身体的部分轮廓线呈抛物线形状. 习题23.2 1,2题 1.说说自己生活中遇到的哪些动物和植物身体的部分轮廓线呈抛物线形状. 2.设正方形的边长为a,面积为S,试作出S随a的变化而变化的图象.

只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步. 下课了! 结束寄语 只有不断的思考,才会有新的发现;只有量的变化,才会有质的进步. 再见