Lecture #10 State space approach
State equation Dynamic equation Output equation State variable State space r- input p- output Meiling CHEN
Inner state variables C A D B + - Meiling CHEN
Motivation of state space approach Example 1 + - noise Transfer function BIBO stable unstable Meiling CHEN
BIBO stable, pole-zero cancellation Example 2 BIBO stable, pole-zero cancellation -2 + - Meiling CHEN
State-space description Internal behavior description then system stable State-space description Internal behavior description Meiling CHEN
單純從 並無法決定x在 以後的運動狀況。除非知道 與 。所以 與 是這個系統過去的歷史總結。故 與 可以作為系統的狀態。 Definition: The state of a system at time is the amount of information at that together with determines uniquely the behavior of the system for Example M 單純從 並無法決定x在 以後的運動狀況。除非知道 與 。所以 與 是這個系統過去的歷史總結。故 與 可以作為系統的狀態。 Meiling CHEN
Example : Capacitor electric energy Input 對系統的歷史總結。 Example : Inductor Magnetic energy Meiling CHEN
Remark 1: 狀態的選擇通常與能量有關, 例如: Position potential energy Velocity Kinetic energy Remark 2: 狀態的選擇必需是獨立的物理量, 例如: 實際上只有一個狀態變數 Meiling CHEN
Example K M2 M1 B1 B3 B2 Meiling CHEN
Example Armature circuit Field circuit Meiling CHEN
Meiling CHEN
Dynamical equation Transfer function matrix Transfer function Laplace transform matrix Transfer function Meiling CHEN
Example MIMO system Transfer function Meiling CHEN
Remark : the choice of states is not unique. + - exist a mapping Meiling CHEN
Different state equation description p is nonsingular Meiling CHEN
Definition : Two dynamical systems with are said to be equivalent. The nonsingular matrix p is called an equivalence transformation. & Theorem: two equivalent dynamical system have the same transfer function. Meiling CHEN