第三章 导数及其应用.

Slides:



Advertisements
Similar presentations
简单迭代法的概念与结论 简单迭代法又称逐次迭代法,基本思想是构造不动点 方程,以求得近似根。即由方程 f(x)=0 变换为 x=  (x), 然后建立迭代格式, 返回下一页 则称迭代格式 收敛, 否则称为发散 上一页.
Advertisements

版 画 制 作版 画 制 作 版 画 种 类版 画 种 类 版 画 作 品版 画 作 品 刘承川.
排列 组合 概率 会考复习. 排列、组合是不同的两个事件,区别的 标志是有无顺序,而区分有无顺序的办法是: 把问题的一个选择结果解出来,然后交换这 个结果中任意两个元素的位置,看是否会产 生新的变化,若有新变化,即说明有顺序, 是排列问题;若无新变化,即说明无顺序, 为组合问题 知识要点.
导数与微分 一、导数的概念 1. 自变量的增量: 2. 函数的增量: 3. 导数的定义:. 导数与微分 即导数为函数增量与自变量增量比的极限.
扬州环境资源职业技术学院基础部 一、微分的定义 二、微分的几何意义 四、微分在近似计算中的应用 第五节 函数的微分 三、基本初等函数的微分公式与微分运算 法则.
2.5 微分及其应用. 三、可微的条件 一、问题的提出 二、微分的定义 六、微分的形式不变性 四、微分的几何意义 五、微分的求法 八、小结 七、微分在近似计算中的应用.
湖南省长沙市一中卫星远程学校 主讲: 汤清亮. 湖南省长沙市一中卫星远程学校 复习引入 1. 一般地,函数的单调性与其导函数的正负 有如下关系: 在某个区间 (a, b) 内,如果 f' (x)>0 ,那 么函数 y=f(x) 在这个区 间内单调递增; 如果 f'(x)
学年度第一学期 八年级物理试卷分析 市北初中 谢爱娟.
XX啤酒营销及广告策略.
第四章:长期股权投资 长期股权投资效果 1、控制:50%以上 有权决定对方财务和经营.
专利技术交底书的撰写方法 ——公司知识产权讲座
高等数学教学课件 教材版本:同济七版 课件研制:军械工程学院 张士军 高等教育出版社 高等教育电子音像出版社.
动量守恒定律及其应用(说课) 说课人 物理组 殷仁勇
第2节《动量守恒定律》 张映平.
舌尖上的昭通.
英 德 美 法 标志 1689年 《权利法案》 1871年 《德意志帝国宪法》 1787年宪法 1875年法兰西第三共和国宪法 政体 君主立宪制 民主共和制 行政权 内阁、首相 皇帝、宰相 总统 立法权 议会 国会 权力中心 皇帝 特点 君主虚位 议会至上 军事封建 皇帝权重 总统共和制 议会共和制.
1.2.2《函数的表示法》.
王德勝(4A228011) 許書漢(4A228017) 林政嘉(4A228043) 賴威銘(4A228046)
中泰·银亿股份贷款集合资金 信托计划 信托业务五总部 2013年10月.
认识结果语境论.
初中语文总复习 说明文 阅读专题 西安市第六十七中学 潘敏.
胚胎学总论 (I) 制作:皖南医学院组胚教研室.
第四章 借贷记账法 在制造业中的应用.
附件6:个人基本情况表(本人保证以下填写资料真实,无弄虚作假。)
四种命题 班级:C274 指导教师:钟志勤 任课教师:颜小娟.
1.1.2 四 种 命 题.
增值评价 2014级 初中起点报告 解读培训 辽宁省基础教育质量监测与评价中心.
第五章 定积分及其应用.
第二节 极限的概念 一、数列的极限 二 、函数的极限 第一章 目标: 理解函数极限的定义;无穷小的性质
指数函数图象的平移.
7-1 能量的形式和轉換 1 of 12 能量是促成自然現象變化的根源,太陽能替我們將水搬到高處,人類再利用高、低水位差發電。
北师大版七年级数学 5.5 应用一元一次方程 ——“希望工程”义演 枣庄市第三十四中学 曹馨.
第7章 相关分析 7.1 相关分析 7.2 相关系数 7.3 线性相关分析.
海洋存亡 匹夫有责 ——让我们都来做环保小卫士 XX小学三(3)班.
2010中考数学 “数与代数”复习的思考 西安高新第一中学 雒 萍.
1.3.1 函数的基本性质.
3.1.3几种常见函数的导数 高二数学 选修1-1.
第三章 导数和微分 一、导数的概念 3.1 瞬时速度和切线斜率
导数及其应用 高三数学组 葛乃兵.
导数的应用 ——函数的单调性与极值.
幂函数 大连市第十六中学李秀敏.
第一单元:分数乘法 分数乘小数 浙江省诸暨市直埠镇第五完小 章麒鹤.
四川省天全中学说课竞赛 多媒体演示课件 ★ ☆ 函数的单调性 天全中学数学组 熊 亮.
第七章  事业单位支出的核算      §第一节  支出概述     §第二节  拨出款项     §第三节  各项支出     §第四节  成本费用.
第一講 函數之圖形與極限 內容: 函數的定義。 函數的表示法。 函數的運算。 函數的圖形。 函數極限的定義。 函數單邊極限的定義。
二次函數的圖形的探討 一次函數與二次函數的定義 一次函數的圖形 二次函數的圖形.
课前注意 课前注意 大家好!欢迎加入0118班! 请注意以下几点: 1.服务:卡顿、听不清声音、看不见ppt—管家( ) 2.课堂秩序:公共课堂,勿谈与课堂无关或消极的话题。 3.答疑:上课听讲,课后答疑,微信留言。 4.联系方式:提示老师手机/微信: QQ:
第三章 导数及其应用.
3.1导数的几何意义.
山东省临沂第一中学 计 算 机 教 学 课 件 指数函数及其性质 (二) 山东省临沂第一中学 Wednesday, May 08, 2019.
4-1 變數與函數 1.前言: 在日常生活中,兩種量之間常有一些特別的關係,這些關係,有時可以用數學符號及式子十分清楚地加以描述,有時只能用文字做大略的描述.
导数的几何意义及其应用 滨海中学  张乐.
第三章复习.
匀变速直线运动的规律 乐清市柳市中学 郑林生.
(3.3.2) 函数的极值与导数.
函数图象的变换及应用 去除PPT模板上的--课件下载: 的文字
第三章 光现象 三、光的直线传播.
光的直线传播 鸡泽县实验中学.
認識函數.
函数的表示方法 北师大高中数学必修1 第二章《函数》.
第3章  函数与方程  第2课时 用二分法求方程的近似解.
声的世界复习.
自动控制原理.
§3 函数的单调性.
高中数学 选修2-2  最大值与最小值 江宁高中 申广超.
再谈三角函数的周期性.
第二章 一元一次不等式和一元一次不等式组 回顾与复习(一).
第4讲 函数的单调性与最值 考纲要求 考纲研读 1.会求一些简单函数的值域. 2.理解函数的单调性、最大值、最小值及其几何意义.
一次函数、二次函数与幂函数 基础知识 自主学习
函数与导数 临猗中学 陶建厂.
Presentation transcript:

第三章 导数及其应用

微积分主要与四类问题的处理相关: 一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等; 二、求曲线的切线; 三、求已知函数的最大值与最小值; 四、求长度、面积、体积和重心等。 导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。

3.1.1变化率问题 问题1 气球膨胀率 我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?

我们来分析一下: 如果将半径r表示为体积V的函数,那么 当V从0增加到1时,气球半径增加了 气球的平均膨胀率为 气球的体积V(单位:L)与半径r (单位:dm)之间的函数关系是 如果将半径r表示为体积V的函数,那么 当V从0增加到1时,气球半径增加了 气球的平均膨胀率为 当V从1增加到2时,气球半径增加了 气球的平均膨胀率为 显然0.62>0.16

思考? 当空气容量从V1增加到V2时,气球的平均膨胀率是多少?

问题2 高台跳水 请计算 在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系 问题2 高台跳水 在高台跳水运动中,运动员相对于水面的高度h(单位:米)与起跳后的时间t(单位:秒)存在函数关系 h(t)=-4.9t2+6.5t+10. 如何用运动员在某些时间段内的平均速度粗略地描述其运动状态? 请计算

请计算

平均速度不能反映他在这段时间里运动状态, 需要用瞬时速度描述运动状态。

这里Δx看作是对于x1的一个“增量”可用x1+Δx代替x2 平均变化率定义: 上述问题中的变化率可用式子 表示 称为函数f(x)从x1到x2的平均变化率 若设Δx=x2-x1, Δf=f(x2)-f(x1) 则平均变化率为 这里Δx看作是对于x1的一个“增量”可用x1+Δx代替x2 同样Δf=Δy==f(x2)-f(x1)

思考? 平均变化率 表示什么? 观察函数f(x)的图象 Y=f(x) y x2-x1 f(x2) B f(x2)-f(x1) f(x1) A 直线AB的斜率 x x1 x2 O

做两个题吧! 1 、已知函数f(x)=-x2+x的图象上的一点A(-1,-2)及临近一点B(-1+Δx,-2+Δy),则Δy/Δx=( ) A 3 B 3Δx-(Δx)2 C 3-(Δx)2 D 3-Δx D 2、求y=x2在x=x0附近的平均速度。 2x0+Δx

小结: 1.函数的平均变化率 2.求函数的平均变化率的步骤: (1)求函数的增量Δf=Δy=f(x2)-f(x1); (2)计算平均变化率

练习: 过曲线y=f(x)=x3上两点P(1,1)和Q (1+Δx,1+Δy)作曲线的割线,求出当Δx=0.1时割线的斜率. K=3Δx+(Δx)2=3+3×0.1+(0.1)2=3.31

作业: 第二教材P67 A 1、2、4,B 5

3.1.2 导数的概念 在高台跳水运动中,平均速度不能反映他在这段时间里运动状态,需要用瞬时速度描述运动状态。我们把物体在某一时刻的速度称为瞬时速度. 又如何求 瞬时速度呢?

如何求(比如, t=2时的)瞬时速度? 通过列表看出平均速度的变化趋势 :

瞬时速度? 我们用 表示 “当t=2, Δt趋近于0时,平均速度趋于确定值-13.1”. 那么,运动员在某一时刻t0的瞬时速度?

导数的定义: 从函数y=f(x)在x=x0处的瞬时变化率是:

应用: 例1 物体作自由落体运动,运动方程为: 其中位 移单位是m,时间单位是s,g=10m/s2.求: (1) 物体在时间区间[2,2.1]上的平均速度; (2) 物体在时间区间[2,2.01]上的平均速度; (3) 物体在t=2(s)时的瞬时速度.

解: (1)将 Δt=0.1代入上式,得: (2)将 Δt=0.01代入上式,得: 即物体在时刻t0=2(s)的瞬时速度等于20(m/s). 当时间间隔Δt 逐渐变小时,平均速度就越接近t0=2(s) 时的瞬时速度v=20(m/s).

它说明在第2(h)附近,原油温度大约以3 0C/H的速度下降;在第6(h)附近,原油温度大约以5 0C/H的速度上升。 应用: 例2 将原油精练为汽油、柴油、塑胶等各种不同产品,需要对原由进行冷却和加热。如果第 x(h)时,原由的温度(单位:0C)为 f(x)=x2-7x+15(0≤x≤8).计算第2(h) 和第6(h)时,原由温度的瞬时变化率,并说明它们的意义。 关键是求出: 它说明在第2(h)附近,原油温度大约以3 0C/H的速度下降;在第6(h)附近,原油温度大约以5 0C/H的速度上升。

应用: 例3.质量为10kg的物体,按照s(t)=3t2+t+4的规律做直线运动, (1)求运动开始后4s时物体的瞬时速度;

练习: 求函数y=3x2在x=1处的导数. 分析:先求Δf=Δy=f(1+Δx)-f(1) =6Δx+(Δx)2   再求  再求

小结: (2)求平均速度 (3)求极限 (2)求平均变化率 (3)求极限 1求物体运动的瞬时速度: (1)求位移增量Δs=s(t+Δt)-s(t) (2)求平均速度 (3)求极限 1由导数的定义可得求导数的一般步骤: (1)求函数的增量Δy=f(x0+Δt)-f(x0) (2)求平均变化率 (3)求极限

作业: 课本86页 A 1,2,3。