惠更斯原理在雷达中的应用 --相位控制雷达原理

Slides:



Advertisements
Similar presentations
探究问题 1 、观察任意一 质点,在做什么运动? 动画课堂 各个质点在各自的平衡 位置附近做机械振动,没 有随波迁移。 结论 1 :
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
平面向量.
精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
3.4 空间直线的方程.
碰撞 两物体互相接触时间极短而互作用力较大
碰撞分类 一般情况碰撞 1 完全弹性碰撞 动量和机械能均守恒 2 非弹性碰撞 动量守恒,机械能不守恒.
圆复习.
例7-1 荡木用两条等长的钢索平行吊起,钢索的摆动规律为j= j 0sin(pt/4)。试求当t=0和t=2s时,荡木中点M的速度和加速度。
2-7、函数的微分 教学要求 教学要点.
Presenter: 宫曦雯 Partner: 彭佳君 Instructor:姚老师
乒乓球回滚运动分析 交通902 靳思阳.
实验六 积分器、微分器.
§7.4 波的产生 1.机械波(Mechanical wave): 机械振动在介质中传播过程叫机械波。1 2 举例:水波;声波.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
2.1.2 空间中直线与直线 之间的位置关系.
工业机器人技术基础及应用 主讲人:顾老师
宁波市高校慕课联盟课程 与 进行交互 Linux 系统管理.
宁波市高校慕课联盟课程 与 进行交互 Linux 系统管理.
看一看,想一想.
从物理角度浅谈 集成电路 中的几个最小尺寸 赖凯 电子科学与技术系 本科2001级.
关于波的反射 刘星PB
专题二: 利用向量解决 平行与垂直问题.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
◆ 第5節 惠更斯原理 一、波前 二、惠更斯原理 1.
一、驻波的产生 1、现象.
一个直角三角形的成长经历.
WPT MRC. WPT MRC 由题目引出的几个问题 1.做MRC-WPT的多了,与其他文章的区别是什么? 2.Charging Control的手段是什么? 3.Power Reigon是什么东西?
§2 光的衍射(diffraction of light)
3.3 垂径定理 第2课时 垂径定理的逆定理.
第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
直线与圆的位置关系.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
《工程制图基础》 第四讲 几何元素间的相对位置.
直线和圆的位置关系 ·.
第十一章 机械波和电磁波 §11-1 机械波的产生和传播 §11-2 平面简谐波的波函数 §11-3 波动方程 波速
《工程制图基础》 第五讲 投影变换.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
一、平面简谐波的波动方程.
四 电动机.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
_01自己实现简单的消息处理框架模型 本节课讲师——void* 视频提供:昆山爱达人信息技术有限公司
24.4弧长和扇形面积 圆锥的侧面积和全面积.
第19章 电磁波与信息时代.
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
3.2 平面向量基本定理.
第6章 均匀平面波的反射与透射.
全伺服 柔性版印刷机 安川电机(中国)有限公司  运动控制事业部
带电粒子在匀强磁场中的运动 扬中市第二高级中学 田春林 2018年11月14日.
第六章 机械波 mechanical wave.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第十七讲 密码执行(1).
工业机器人技术基础及应用 主讲人:顾老师
《智能仪表与传感器技术》 第一章 传感器与仪表概述 电涡流传感器及应用 任课教师:孙静.
§2.高斯定理(Gauss theorem) 一.电通量(electric flux) 1.定义:通过电场中某一个面的电力线条数。
生活中的几何体.
第一模块 向量代数与空间解析几何 第六节 二次曲面与空间曲线 一、曲面方程的概念 二、常见的二次曲面及其方程 三、空间曲线的方程
第三章 图形的平移与旋转.
Presentation transcript:

惠更斯原理在雷达中的应用 --相位控制雷达原理 PB04203157 车韶

雷达 雷达利用电磁波探测目标并测定其位置、速度和其他特征的电子设备。雷达具有发现目标距离远、测定目标坐标速度快、能全天候工作等特点,在军事上广泛应用于警戒、引导、武器控制、侦察、测量、航行保障、敌我识别和气象观测等方面,是一种重要的军用电子技术装备。雷达在国民经济和科学研究等领域中也广泛应用。 相控阵雷达(全称相位控制阵列雷达,Phased Array Radar): 雷达的分类方式很多,这里说的相控阵雷达是按雷达天线波束扫描控制方式分类的一种雷达. 它产生较晚,最初由美国于1958年开始研制.但由于它很好地解决了波束聚集和扫描跟踪的问题,并具有反应时间短的优点,正越来越多地被人们所认同. 相控阵雷达的原理可以用我们学过的惠更斯原理来解释.

雷达的工作原理 工作原理 雷达通常是通过向空间发射电磁波和接收目标回波信号进行工作的。当雷达发射的电磁波遇到各种物体时,就会向各个方向产生散射,其中的一小部分能量返回雷达,这种反射波称为回波。从所要探测的目标反射的回波,称为目标信号;从非需要目标反射的回波,称为杂波 雷达到目标的距离(斜距)r可以通过测定电磁波从雷达到目标,然后返回雷达所需要的传播时间t来确定 目标的方向(方位和仰角)是利用雷达天线定向辐射的特性测定。雷达天线把电磁波能量集聚成尖锐的波束,并使波束对目标所在区域进行扫描,回波最强时的波束指向即为目标方向。

雷达的工作原理要求解决的两个问题: 1.把雷达发出的电磁波聚集到一个窄的波束上,保证其具有较大的能流密度。 2.为了使雷达能探测空间各个方向上的目标,就必须使波束能自由地移动,实现扫描或跟踪目标。

雷达应用时遇到的主要问题 单一波源的能量很小,且以球形波阵面向空间各向传播。 波在单位时间内通过某一面积S的平均能量称为波通过该面的平均功率,记为P. 则有P=I·S I为能流密度 波源的功率是对包围波源的闭合曲面的功率,即P=∮I·dS 对于球面波,P=I·4πr2 由于波源的功率是常量,故: I=P/4πr2∝r-2 既球面波的能流密度与球形波阵面的半径平方成反比,亦既与目标于雷达间距离平方成反比。 由此可知,到达目标的雷达波在单位 面积上的能量与目标与雷达距离平方 成反比。使用普通的波源时, 即使忽略能量在传播过程中的损失, 也因反射信号极微弱而难以接收。

雷达应用时遇到的主要问题 为增加雷达波的强度,理论上可以采用的方法: 1.增加发射功率。 2.让雷达波尽可能平行发射以聚焦能量。 如抛物面雷达: 在抛物面焦点处安装发射天线,经抛物面反射后近似产生平行的雷达波束。 抛物面雷达产生平行波束

上述方法的缺点: 1.因为I∝r-2的反比关系,单纯增大发射功率对提高探测距离产生的作用很小. 2.使用抛物面天线虽然解决了雷达波的平行发射问题,但是在实用当中,雷达波束需要时刻指向目标以便跟踪.因此抛物面天线必须装在可以旋转的支架上,并需要伺服马达加以驱动. 在探测洲际导弹或进行卫星测控等与高速目标有关的场合,往往要用较大尺寸的天线,而目标相对于雷达的角速度很大,因此雷达也要高速转动.天线的巨大惯性会导致很多工程技术上的难题.

惠更斯原理 波线:用有向线段表示波的传播方向,也叫波射线。 波面:媒质中振动相位相同的各质点组成的面,也叫 波阵面。 波前:在波已传到的空间区域,有一系列的波面,这 些波面的最前沿的那一个叫做波前。 平面波:波面是一些平面的波。 球面波:波面是一些同心球面的(可以是球面的一部分) 介质中,波传播到的各点不论在同一波前或不同波前上,都 可以看作一个发射子拨的波源。在 t 时刻的波前上的这些子 波源发出的子波,经⊿t 时间后形成半径为 v⊿t( v为波速) 的球面,在波的前进方向上,子波的包迹就成为时刻 t +⊿t 的新波前,如图所示。 利用惠更斯原理可以由已知的波前通过几何作图方法确定下 一时刻的波前,从而确定拨的传播方向。例如当波在均匀的 各向同性介质中传播时,用上述作图法求出的波前的几何形 状总是保持不变的。

相位控制阵列雷达的解决方案 相位控制阵列雷达利用了惠更斯原理: 当有很多点波源并且个波源产生波的频率一致时相当于各个点波源为子波的波源,点波源以平面排列,则可产生平面波。 其原理可由图表示: 很多密集的点波源相当于子波的波源。以个波源为圆心取相同的半径画半圆,得到各波的波前。合成波的波前即为各子波波前的包络线,如果在单位面积里点波源的数量越多,合成波的波前就越接近平面,即产生平行于雷达阵面的波。所以相控阵雷达的天线为平面。 (背景为美国“铺路爪”远程预警雷达,在圆形天线阵列上排列着15360个天线单元。)

相位控制阵列雷达的解决方案 在解决扫描跟踪问题上,相控阵雷达有着更大优势: 如图所示,考虑三个相邻的点波源A1,A2,A3。 为了改变波束的传播方向,使波线与天线阵面夹角为θ, 则T时刻A3,A2,A1的波前分别如图所示。合成波的波前即指向θ方向运动。 θ 设波源A1产生的波的运动方程为: Y=Acos[ω(t-x/c)+ψ0] 波源A2产生的波要在同一时刻到达包络线,要求A2的相位比A1大: A2的相位应为:ω[t-(x+dcosθ)/c+ψ0] 其中d为两相邻波源的距离 由此可得相邻两波源的相位差应为:(ωdcosθ)/c=(2πdcosθ)/λ

若目标T的坐标为(θ,ψ,r),天线阵列位于YoZ平面内。 设O点的波源初相位为0,则阵面上第(m,n)号波源的相位应为: ω(t-x/c)+d·(mcosθ+ncosψ)/c 由移相器来控制不同天线单元的相位,不用转动整个天线阵面,因此扫描速度不受到天线大小的限制。 z T ψ y θ x

F-22战斗机的雷达 相控阵雷达具有很多优点: 相控阵雷达利用电子扫描而非机械扫描,具有灵活,快速的特点。 在处理系统允许的情况下,相控阵雷达能够同时形成多个独立控制的波束,即将天线阵列上的天线单元分成若干组,采用不同的相位以指向不同的目标。 可靠性高。天线阵列由很多单元组成,在少量单元失效时仍可正常工作。 因此,相控阵雷达是目前各国研究的热门项目。它已广泛地应用于飞机,舰船以及导弹防御系统中。 美军“伯克”级驱逐舰装载的相控阵雷达 由于相控阵雷达的原理要求其天线 阵面为平面,因此很容易将其与普 通的抛物面天线雷达相区别 美军F/A-18战斗机装载的相控阵雷达 F-22战斗机的雷达 美国导弹防御系统的预警雷达

题外话 2001年中国同以色列达成合同进口“费尔康”预警机。  以色列的“费尔康”预警机是一种全新概念的预警,它是以波音707民航客机为操作平台载机,更换发动机,加装以色列研制的“费尔康”空中预警管制系统和其它众多的电子设备而成的,其关键技术为机头一侧安装的相控阵雷达。 但美国出面干涉该项目,导致合作计划最终停止。 该事件从一定侧面反映出相控阵雷达的优秀作战性能。

写在最后的感想 相控阵雷达是当今最先进的军事技术之一,而其基本原理用惠更斯原理解释起来非常简单。 在听课时觉得惠更斯原理只不过是一个为了解释波的传播中的一些现象的纯理论的东西。但没有想到在实际的应用中,相控阵雷达的先驱者能敏锐地发现通过改变相邻波源相位来改变合成波方向的方法,在某种程度上可以说影响了当今新军事技术革命的方向。 可见学习物理学的理论,不单单是要掌握它的基本原理,更应该能在实践中发现它巧妙的用途,从而使知识真正的成为力量。