任课老师:戴滨林 上海交通大学博士 复旦大学博士后 副教授 硕士导师
戴滨林 E-mail:bldai@sohu.com 办公室:数学系404 办公室电话:65904529
电子课件 金融数学
电子课件 期权定价的数学模型和方法 姜礼尚 著(第二版)
Financial Mathematics Fundament of Financial Mathematics -- Option Pricing
期权定价的数学模型和方法 第一章 风险管理与金融衍生物 第二章 无套利原理 第三章 期权定价的离散模型(二叉树方法) 第一章 风险管理与金融衍生物 第二章 无套利原理 第三章 期权定价的离散模型(二叉树方法) 第四章 Brown运动和Ito公式 第五章 欧式期权定价(Black-Scholes公式) 第六章 美式期权定价与最佳实施策略 第七章 有关Black-Scholes公式的推广与应用
课程目的/Major Subjection of Course/ 学生通过学习,具备金融数学的基础知识,掌握各种金融衍生物定价的数学建模,求解方法与技巧,以及几种数值方法,如二叉树方法、有限差分方法。 本课程的重点是金融衍生物定价模型的建立与计算。特别是二叉树方法。它既是一种计算金融衍生物价格的计算格式,同时它本身也是一种离散的金融模型,并且这种模型具有明显的金融意义。因此,这是一种普遍被金融界接受的计算方法。我们将着重讲清它在金融上的无套利意义。同时对于用到的一些数学基础知识与运算技巧,例如:倒向归纳法与概率上的近似方法作充分的讲解。 课时/Periods/ 3节/周(51学时) 考试/Examination/ 闭卷:期末考试。 参考书目/Reference Books/ 《期权定价的数学模型和方法》,姜礼尚著,高等教育出版社,2007年 金融数学,蔡明超译(斯塔夫里和古德曼著),机械工业出版社,2006年 (目前,国内外金融工程专业普遍将J.Hull的专著“Option, Futures and other Derivatives”作为教材或参考书)
金融数学(规范金融数学和实证金融数学) 期权定价的数学模型和方法 ----金融数学(规范金融数学)简介 金融衍生品定价的最早起源应可追溯到1900年法国Louis Bachelier 发表了他的学位论文“Theorie de la Speculation”(投机交易理论)。在他的论文中首次利用随机游动的思想给出了股票价格运行的随机模型,提出了期权的定价问题,它被公认是现代金融学的里程碑。1964年Paul Samuelson (Nobel奖获得者)对L. Bachelier的模型进行了修正,提出了股票运行的几何Brown运动模型。基于这个模型,Fischer Black 和Myron Scholes在1973年建立了看涨期权定价公式。正是由于这个公式及由此产生了期权定价理论方面的一系列贡献,M.Scholes和 R.Merton 1997年获得Nobel经济奖。此后基于这种思想的期权定价理论在国外得到了迅速的发展。
课程包括金融数学的基础知识、无套利原理、随机过程基本知识与Brown运动、金融衍生物定价数学建模的Δ-对冲方法、数理方程的变换技巧以及差分方法与二叉数方法等。学生通过学习,具备金融数学的基础知识,掌握各种金融衍生物定价的数学建模,求解方法与技巧,以及几种数值方法,如二叉树方法、有限差分方法。本课程的重点是金融衍生物定价模型的建立与计算。特别是二叉树方法。它既是一种计算金融衍生物价格的计算格式,同时它本身也是一种离散的金融模型,并且这种模型具有明显的金融意义。因此,这是一种普遍被金融界接受的计算方法。我们将着重讲清它在金融上的无套利意义。同时对于用到的一些数学基础知识与运算技巧,例如:倒向归纳法与概率上的近似方法作充分的讲解(离散情形和连续情形)。 。
教 材: 《期权定价的数学模型和方法》,姜礼尚著,高等教育出版社,2007年. 参考书目: 金融数学,蔡明超译(斯塔夫里和古德曼著),机械工业出版社,2006年 Options, Futures and other Derivatives, Fourth Edition, Prentice- Hall,2000。 。
一、金融数学的重要性 二、金融数学的复杂性 三、金融数学的学习方法
四、具体要求 预习、复习、作业
休息片刻继续
第一章 风险管理与金融衍生物
Chapter 1 Risk Management & Financial Derivative
一、基本概念 1.集合: 具有某种特定性质的事物的总体. 组成这个集合的事物称为该集合的元素. 有限集 无限集
Risk Risk - uncertainty of the outcome Risks in Financial Market bring unexpected gains cause unforeseen losses Risks in Financial Market asset (stocks, …), interest rate, foreign exchange, credit, commodity, ………… Two attitudes toward risks Risk aversion Risk seeking
Financial Derivatives Many forms of financial derivatives instruments exist in the financial markets. Among them, the 3 most fundamental financial derivatives instruments: Forward contracts Future Options If the underlying assets are stocks, bonds etc., then the corresponding risk management instruments are: stock futures, bond futures, etc..
= Risk Management risk management - underlying assets Method – hedging - using financial derivatives i.e. holds two positions of equal amounts but opposite directions, one in the underlying markets, and the other in the derivatives markets, simultaneously. = Underlying asset put or call Derivative call or put
Forward Contracts an agreement to buy or sell at a specified future time a certain amount of an underlying asset at a specified price. an agreement to replace a risk by a certainty traded OTC long position - the buyer in a contract short position - the seller in a contract delivery price - the specified price maturity - specified future time
Future Long position Short position K K
Futures same as a forward contract have evolved from standardization of forward contracts differences – futures are generally traded on an exchange a future contract contains standardized articles the delivery price on a future contract is generally determined on an exchange, and depends on the market demands
Options an agreement that the holder can buy from (or sell to) the seller (the buyer) of the option at a specified future time a certain amount of an underlying asset at a specified price. But the holder is under no obligation to exercise the contract. a right, no obligation the holder has to pay premium for this right is a contingent claim Has a much higher level of leverage
Two Options A call option - a contract to buy at a specified future time a certain amount of an underlying asset at a specified price A put option - a contract to sell at a specified future time a certain amount of an underlying asset at a specified price. exercise price - the specified price expiration date - the specified date exercise - the action to perform the buying or selling of the asset according to the option contract
Option Types European options - can be exercised only on the expiration date. American options - can be exercised on or prior to the expiration date. Other options – Asia option etc.
Total Gain of an Option K K p Call option put option K K p [Total gain]= [Gain of the option at expiration]-[Premium]
Option Pricing risky asset’s price is a random variable the price of any option derived from risky asset is also random the price also depends on time t there exists a function such that known How to find out
Types of Traders Hedger - to invest on both sides to avoid loss Speculator - to take action characterized by willing to risk with one's money by frequently buying and selling derivatives (futures, options) for the prospect of gaining from the frequent price changes. Arbitrage - based on observations of the same kind of risky assets, taking advantage of the price differences between markets, the arbitrageur trades simultaneously at different markets to gain riskless instant profits
Hedger Example In 90 days, A pays B £1000,000 To avoid risk, A has 2 plans Purchase a forward contract to buy £1000,000 with $1,650,000 90 days later Purchase a call option to buy £1000,000 with $1,600,000 90 days later. A pays a premium of $64,000 (4%) current rate ($/ £) 90-day later Rate ($/ £) no hedging $ forward cont. hedging $ call option 1.60 up 1.70 down 1.55 1,700,000 1,550,000 1,650,000 1,664,000 1,614,000
Speculator Example Stock A is $66.6 on April 30, may grow A speculator has 2 plans buys 10,000 shares with $666,000 on April 30 pays a premium of $39,000 USD to purchase a call option to buy 10,000 shares at the strike price $68.0 per share on August 22
Speculator Example cont. Situation I: The stock $73.0 on 8/22. Strategy A Return =(730-666)/666*100%=9.6% Strategy B Return =(730-680-39)/39*100%=28.2% Situation II: The stock $66.0 on 8/22. Return =(660-666)/666*100%=-0.9% Strategy B loss all investment Return = - 100%
五、小结 基本概念 集合, 区间, 邻域, 常量与变量, 绝对值. 函数的概念 函数的特性 有界性,单调性,奇偶性,周期性. 反函数
思考题
思考题解答 设 则 故
练 习 题
作业
思考与练习 1.曲线上任一点的切线与两坐标轴所围成的三角形 的面积都等于常数 ,求该曲线所满足的微分方程. 解: 由题目条件有: