第12讲 向量空间,齐次线性方程组的结构解 主要内容: 1. 向量空间 (1) 向量空间的定义 (2) 向量空间的基

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
常系数线性微分方程组 §5.3 常系数线性方程组. 常系数线性微分方程组 一阶常系数线性微分方程组 : 本节主要讨论 (5.33) 的基解矩阵的求法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
线 性 空 间 线性空间的定义 线性空间 的子空间 小结. 线性空间是线性代数最基本的概念之一,也是 一个抽象的概念,它是向量空间概念 线性空间是线性代数最基本的概念之一,也是 一个抽象的概念,它是向量空间概念的推广. 线性空间是为了解决实际问题而引入的,它是 某一类事物从量的方面的一个抽象,即把实际问题看作向量空间,进而通过研究向量空间来解决实际问题.
§3.4 空间直线的方程.
§1. 预备知识:向量的内积 ★向量的内积的概念 ★向量的长度 ★向量的正交性 ★向量空间的正交规范基的概念 ★向量组的正交规范化
第四章 向量组的线性相关性 §1 向量组及其线性组合 §2 向量组的线性相关性 §3 向量组的秩 §4 线性方程组的解的结构.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
线性代数 第六章 矩阵的对角化 6.3 内积和正交矩阵.
第6章 向量空间 6.1 向量空间的定义和例子 6.2 子空间 6.3 向量的线性相关 6.4 基和维数 6.5 坐 标
第18讲 欧氏空间 主要内容: 1.向量的内积 2. 欧氏空间的定义 3.正交矩阵.
3.4 空间直线的方程.
线性方程组的求解过程分析 自强学院 尹剑翀 指导老师 顾传青.
第五章 二次型 §5.1 二次型的矩阵表示 §5.2 标准形 §5.3 唯一性 §5.4 正定二次型 章小结与习题.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第三章 函数逼近 — 最佳平方逼近.
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
§3.4 向量组的极大线性无关组 这一节将在上一节建立的概念基础上,转 而讨论 中两个向量组 , 之间的关系。从理论上研究在一向量组中,哪
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
§ 7.1 线性空间的概念 我们考察数域P上全体m×n矩阵的集合Mn,n(P)和数域P上全体n维向量集合(即n维向量空间)Pn, 可以看出,这两个集合中元素的加法与数域P中数与集合元素之间的数量乘 法都有十分相似的运算性质.如果它们抽象出来,就得出一般线性空间的概念.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
1.5 场函数的高阶微分运算 1、场函数的三种基本微分运算 标量场的梯度f ,矢量场的散度F 和F 旋度简称 “三度” 运算。
§4.3 常系数线性方程组.
第3讲 线性方程组的高斯求解方法 主要内容: 1. 线性方程组的高斯求解方法 2. 将行阶梯形矩阵化为行最简形矩阵.
线性代数机算与应用 李仁先 2018/11/24.
第2讲 线性方程组解的存在性 主要内容: 1. 线性方程组的解 2.线性方程组的同解变换与矩阵的初等行变换
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
I. 线性代数的来龙去脉 -----了解内容简介
第四章 向量组的线性相关性.
第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: 第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: (1) n个未知数的齐次线性方程组Ax.
Partial Differential Equations §2 Separation of variables
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
特 征 值 与 特 征 向 量 一、特征值与特征向量的概念 二、特征值和特征向量的性质.
复习.
第十章 双线性型 Bilinear Form 厦门大学数学科学学院 网址: gdjpkc.xmu.edu.cn
第三章复习及习题课.
§4 线性方程组的解的结构.
第三章 线性空间 Linear Space.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§3 向量组的秩.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第13讲 非齐次线性方程组的结构解, 线性空间与线性变换
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第五章 相似矩阵及二次型.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
例1 全体 n 维向量构成的向量组记作Rn,求Rn的一个极大无关组和Rn的秩。
§2 方阵的特征值与特征向量.
第五节 线性方程组有解判别定理 一、线性方程组的向量表示形式 二、线性方程组有解判别定理 三、一般线性方程组的解法 四、线性方程组的求解步骤.
第三章 矩 阵的秩和线性方程组的相容性定理 第一讲 矩阵的秩;初等矩阵 第二讲 矩阵的秩的求法和矩阵的标准形 第三讲 线性方程组的相容性定理.
在发明中学习 线性代数概念引入 之四: 矩阵运算 李尚志 中国科学技术大学.
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
§5 向量空间.
6.5 可对角化的矩阵 授课题目:6.5 可对角化的矩阵 授课时数:6学时 教学目标:掌握矩阵对角化的定义与方法 教学重点:矩阵对角化的方法
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第一节 矩阵的初等变换 一、消元法解线性方程组 二、矩阵的初等变换 三、初等矩阵的概念 四、初等矩阵的应用.
高等代数课件 陇南师范高等专科学校数学系 2008年制作.
§1 向量的内积、长度及正交性 1. 内积的定义及性质 2. 向量的长度及性质 3. 正交向量组的定义及求解 4. 正交矩阵与正交变换.
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
Presentation transcript:

第12讲 向量空间,齐次线性方程组的结构解 主要内容: 1. 向量空间 (1) 向量空间的定义 (2) 向量空间的基 2. (最重要内容)齐次线性方程组的结构解

3.4 向量空间 给定向量组A及其极大无关组B,由于A与B等价,A中的每个向量都是B的线性组合. 现在的问题是,是否B的任意线性组合都属于A? 回答是否定的. 若A是向量空间,则答案是肯定的. 向量空间的几何背景是解析几何中的R2和R3,直到19世纪上半叶才推广到一般的向量空间.

3.4.1 向量空间的定义 Def 3.9 设V是向量组,若V满足以下两个条件,则称V为向量空间. (1) 任意,   V, 有 +   V. (V关于向量的加法运算封闭) (2) 任意  V,以及任意   R,有  V. (V关于向量的数乘运算封闭) 为了简单,我们忽略了向量空间所在的数域,通常在实数范围内讨论.

例如Rm是向量空间,因为Rm是所有m维向量构成的向量组,它关于向量的加法运算和数乘封闭. 例3.14 设 则V是向量空间.

例子中的V实际上是R3中的xOy坐标面,但 不是向量空间,因为取 = 2,

例3.15 设a和b是R3中的两个线性无关的向量,如 令 则V是向量空间.

V是由向量a和b生成的向量空间,在R3中,它是通过a和b的平面. 一般地,设向量组为1, 2,…, n,则 是向量空间,称为由1, 2,…, n生成的向量空间,可表示为 Span{1, 2,…, n}

3.4.2 向量空间的基与坐标 由于向量空间是特殊的向量组,把 Def 3.10 向量空间V的极大线性无关组称为是向量空间的基(basis),极大线性无关组中所含的向量个数称为是V的维数(dimensionality),记为dim(V). 显然,若V = {0},V不存在基,这时dim(V) = 0.

由于 是R3的极大无关组,所以它是R3的一个基. 实际上,i, j, k是空间直角坐标系的三个坐标向量. 于是,dim(R3) = 3,即R3是3维空间.

容易验证 是R3的一个基. 由定理3.5知,对于维数为n的向量空间V,若V存在n个线性无关的向量1, 2, …, n ,则1, 2,…, n一定是V的基.

例3.16 设V是向量空间, 1, 2,…, n是V的基, 则 Proof

取R3中的基为i, j, k,对于任意 x, y, z为该向量在基i, j, k下的坐标. Def 3.11设V是向量空间, 1, 2,…, n是V的一个基,对于任意  V, 令 则称(x1, x2,…, xn)为向量在基1, 2,…, n下的坐标.

例3.17 计算向量 =(x, y, z)T在基 下的坐标.

3.5 线性方程组的结构解 本节在前面建立的向量空间的基础上讨论线性方程组解与解之间的联系,它可以看作是向量空间理论的一个应用. 对于非齐次线性方程组Amnx = b的讨论,可归结到其对应的齐次线性方程组为Amnx = 0的讨论,此讨论方法可用于诸如非齐次线性微分方程(组)的解的讨论等. 本节涉及内容较多,解题方法灵活,是本章的重点内容之一. 首先对齐次线性方程组进行单独讨论.

3.5.1 齐次线性方程组的结构解 Theorem 3.6 设S是n元齐次线性方程组Amnx = 0的所有解向量组成的集合,即S = {x|Ax = 0}. 则S是向量空间,称为Ax = 0的解空间(solution space). Proof 显然0  S  . (1) S关于向量的加法运算封闭: 任意1, 2  S,这时A1= 0, A2= 0.

于是, A(1 + 2) = A1 + A2 = 0 + 0 = 0.因此,1 + 2  S. (2) S关于向量的数乘运算封闭: 任意  S,以及任意   R,由于A = 0, 所以A() =  (A) =  0 = 0,因此有  S.

从定理3.6的证明过程知,齐次线性方程组Amnx = 0具有下列性质. 性质1 若A1= 0, A2= 0, 则A(1 + 2) = 0. 性质2 若A = 0,   R,则A() = 0. 推而广之,齐次线性方程组Amnx = 0若干个解的线性组合仍是它的解.

为了方便,将解空间S的基称为齐次线性方程组Ax = 0的基础解系(system of fundamental solutions). 根据定理3.6知,只要得出Ax = 0的一个基础解系,则S是由这个基础解系生成的向量空间,就可得出Ax = 0的所有解,即通解.

求出基础解系,实际上是得出齐次线性方程组解的一个框架结构,这样得出所有的通解称为Ax = 0的结构解(structural solutions of Ax = 0),它也是通解的一种形式. 首先证明

Theorem 3. 7 设S是n元齐次线性方程组Amnx = 0的解空间,若R(A) = r,则dim(S) = n – r Theorem 3.7 设S是n元齐次线性方程组Amnx = 0的解空间,若R(A) = r,则dim(S) = n – r. 换句话说,n元齐次线性方程组Amnx = 0的基础解系中含解向量的个数为n – r. Proof 若R(A) = n,由定理1.2知,齐次线性方程组Amnx = 0只有零解,这时dim(S) = 0,结论成立. 假设R(A) = r < n,则Amnx = 0有n – r个自由未知量,不妨设为

按1.3节,令 则Amnx = 0的所有解为

一方面,由于 另一方面,S中任意向量可写成(3.9)式,即S中任意向量都是 的线性组合. 因此,它是齐次线性方程组Amnx = 0的基础解系,其中含n – r个解向量.#

设R(A) = r,只要得出任意的n – r个线性无关的Amnx = 0的解向量,它就是Amnx = 0的基础解系,进而S是由其基生成的向量空间. R(A) = r,求解Ax = 0的基础解系的方法: Step1 将系数矩阵化成行最简形. Step2 确定出n – r个自由未知量. Step3 得出类似于(10)式n – r个线性无关的向量组,进而可得出类似于(3.8)式的n – r个线性无关的解向量,它就是齐次线性方程组Amnx = 0的基础解系.

例3.19 求下列齐次线性方程组的结构解. Solution 可确定x2和x4为自由未知量.

令 结构解为

Remark 1. 最后得到的结构解(3.12)与在第1章用高斯消元得到的通解 是完全一致的.

2.若在Step 3令

由向量空间理论知,任意两个基础解系都是解空间S的基,它们是等价的,因而(3. 12)、(3. 13)和(3. 14)都是齐次线性方程组(3 结构解是通解的一种形式,它与第1章1.3节用高斯消元法得出的通解本质相同. 对于非齐次线性方程组有同样的结论,见下面的讨论.

实际上,若不要求给出结构解,按第1章高斯消元法得出其通解更方便. 容易知道,求结构解比用高斯消元法得出通解更灵活,只需要得出一个基础解系即可. 在下一章计算方阵的特征向量时就需要这种基础解系,换句话说,基础解系本身也是非常重要的. 利用线性方程组的有关理论,主要是定理3.7,可以证明一些关于矩阵秩的重要结论.

Theorem 3.8 设AmnBnk = 0,则R(A) + R(B)≤n. Proof