第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.

Slides:



Advertisements
Similar presentations
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
Advertisements

精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
第6章 多元函数微积分 6.1空间解析几何简介. 6.2多元函数微分学. 6.3多元函数积分学..
第6章 向量代数与空间解析几何 一、内容提要 (一)主要定义
第11章 向量代数与空间解析几何MATLAB求解
第七章 空间解析几何与向量代数 1、空间直角坐标系; 2、向量及其线性运算; 3、向量的坐标、数量积、向量积;
第七章 向量代数与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的坐标表示 第三节 向量的数量积和向量积 第四节 平面方程
一、曲面及其方程 二、母线平行于坐标轴的柱面方程 三、以坐标轴为旋转轴的旋转曲面 四、小结
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第六章 空间解析几何.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第七章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第七章 向量与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的点积与叉积 第三节 平面与直线 结束.
第三章 空间解析几何 与向量代数.
第九章 空间解析几何 一、主要内容 二、典型例题.
3.4 空间直线的方程.
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第六章 向量代数与空间解析几何 第一节 向量及其线性运算 一、空间直角坐标系 二、向量与向量的线性运算 三、向量的坐标表示式
第9章 向量与空间解析几何 9.1 空间直角坐标系与向量的概念 9.2 向量的数量积与向量积 9.3 平面方程与空间直线方程
空间直角坐标系 这一章,我们为学习多元函数微积分学作准备,介绍空间解析几何和向量代数。这是两部分相互关联的内容。用代数的方法研究空间图形就是空间解析几何,它是平面解析几何的推广。向量代数则是研究空间解析几何的有力工具。这部分内容在自然科学和工程技术领域中有着十分广泛的应用,同时也是一种很重要的数学工具。
第八章 空间解析几何 与向量代数 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第七章 空间解析几何 §5 空间直线及其方程 一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两空间直线的夹角
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
直线与双曲线的位置关系.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
圆复习.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
北师大版(必修2) 课题:§2.3 直线与圆的位置关系 授课教师:韩伟 年级:高中一年级 单位:阜师院附中.
3.2.1 直线的方向向量 与平面的法向量.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
一、平面的点位式方程 1 平面的方位向量 过空间中一点M与两个不共线的向量 ,可以唯一确定一个平面 ,则 向量 称为平面 的方位向量
§7.2 直线的方程(1) 1、经过两点P1(x1,y1),P2(x2,y2)的斜率公式: 2、什么是直线的方程?什么是方程的直线?
第三章 直线 基本要求 §3-1 直线的投影 §3-2 直线对投影面的相对位置 §3-3 一般位置线段的实长及它与投影面的夹角
本节内容 平行线的性质 4.3.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
§1.1空间直角坐标系 一.空间直角坐标系 坐标原点; 坐标轴; 坐标平面。
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
2.3.4 平面与平面垂直的性质.
第三章 直线与平面、 平面 与平面的相对位置 内 容 提 要 §3-1 直线与平面平行 • 平面与平面平行
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
直线和平面垂直的性质定理 (高中数学课件) 伯阳双语数学科组 张馥雅.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
3.1.3 导数的几何意义.
《工程制图基础》 第四讲 几何元素间的相对位置.
直线和圆的位置关系 ·.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
空间平面与平面的 位置关系.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
第一模块 向量代数与空间解析几何 第二节 向量及其坐标表示法 一、向量的概念 二、向量的坐标表示法.
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
3.2 立体几何中的向量方法 3.2 . 1 直线的方向向量与平面的法向量 1.了解如何用向量把空间的点、直线、平面表示来出.
用向量法推断 线面位置关系.
3.2 平面向量基本定理.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
复习回顾 条件:不重合、都有斜率 条件:都有斜率 两条直线平行与垂直的判定 平行:对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
第一模块 向量代数与空间解析几何 第六节 二次曲面与空间曲线 一、曲面方程的概念 二、常见的二次曲面及其方程 三、空间曲线的方程
3.3.2 两点间的距离 山东省临沂第一中学.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
Presentation transcript:

第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角

一、空间直线的点向式方程和参数方程 设直线 L 过点 M0(x0, y0, z0), 设 M(x, y, z)是直线 L 上任意一点, 由两向量平行的充要条件可知 ① z L s M 方程组 ① 称为直线的点向式方程或标准方程 (当 m,n,p 中有一个或两个为零时, 就理解为相应的分子是零). M0 y x

若直线 L 的方程为 平面  的方程为 则直线 L 与平面  平行的充要条件是 mA + nB + pC = 0 . 直线 L 与平面  垂直的充要条件是 在直线方程 ① 中, 记其比值为 t , 则方程组 称为直线的参数方程,t 为参数.

例 1 求过点 M( 2, 0, 3 )且垂直于平面  : 4x + y z + 5 = 0 的直线方程. 解 设所求的直线方程为 所以可取s = n, 由于直线垂直于平面  , 即 s =  m , n , p  = 4 , 1 , 1 , 故所求的直线方程为

M2(x2, y2, z2)的直线方程. 例 2 求过点 M1 (x1, y1, z1), 解 设所求的直线方程为 由于直线过点 M1,M2 , 所以可取向量 故所求的直线方程为 为直线的方向向量 s .

且平行于两平面 3x y + 5z + 2 = 0 例 3 求过点(1, 3, 2) 及 x + 2y 3z + 4 = 0 的直线方程. 解 设所求的直线方程为 故直线的方向向量 s 垂直于两平面的法向量 因为所求直线平行于两平面, n1 =  3 , 1 , 5 及 n2 = 1 , 2 , 3 . 所以

因此所求的直线方程为 即

与平面 2x + y -z - 5 = 0 的交点. 例 4 显然 P 点的坐标应同时满足已知的直线方程与平面方程. 解 设所求交点为 P(x, y, z), 解方程组 得 t = 4 , 代入参数方程得 x = 3,y = 6,z = 5, 即交点 P 的坐标为(3, 6, 5).

例 5 求点 P(1, 1, 4)到直线 L: 的距离. 过点 P 且垂直于直线 L 的平面  的法向量为 n = 1, 1, 2, 解 则平面方程为 ( x1 ) + ( y 1 ) + 2( z  4 ) = 0, 即 x + y + 2z 10 = 0 . ① 由于 L 的参数方程为 x = 2 + t, y = 3 + t, ② z = 4+ 2t,

将 ② 代入 ①, 得 6t + 3 = 0, 即 ③ 将 ③ 代入 ② 得交点 Q 的坐标为 所以点 P 到 L 的距离

二、空间直线的一般方程 表示这两个平面的交线, 方程组 称为空间直线的一般方程. 表示 z 轴所在的直线方程, 例如方程组 而 表示 y 轴所在的直线方程.

化为点向式方程及参数方程. 例 6 将直线方程 即点(  2, 0, 0 )在直线上. 解 令 z = 0 代入原方程得 x = 2, y = 0, 因为 s 分别垂直于两平面的法向量 n1 = 1, 1, 2, n2 = 2,  1, 3. 所以

所以直线的点向式方程为 令上式等于 t, 得已知直线的参数方程为

例 7 一直线过点 M5, 0, 2, 且与直线 平行,求该直线方程. 所以它的方程为 解 因为所求直线过点(5, 0, 2), 又因已知直线 的方向向量 s' 为:

即 s = m, n, p =2, 5, 11 , 因此, 所求直线方程为

三、空间两直线的夹角 两直线方向向量的夹角称为两直线的夹角. 设直线 L1 和 L2 的方程为 那么 L1 和 L2 的夹角  的余弦为

两直线 L1,L2 垂直的充要条件是: 通常规定,  ∈[ 0 ,  ]. 易知 两直线 L1,L2 平行的充要条件是:

确定下列各方程组所表示的直线或直线与平面间的位置关系: 例 8 解 (3)直线 L3 // 平面 1; (4)直线 L4 在平面 2 上; (5)直线 L5⊥平面 3 .

例 9 求直线 L1 : 和 的夹角. 解 由公式可得 所以