主要内容 1、柱面 2、锥面 3、旋转曲面 4、椭球面 5、双曲面 6、抛物面

Slides:



Advertisements
Similar presentations
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
Advertisements

6.2 二次函数图象和性质 (1) 1 、函数 y = x 2 的图像是什么样子呢 ? 2 、如何画 y=x 2 的图象呢 ?
第五章 多元函数微分学.
精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
第6章 多元函数微积分 6.1空间解析几何简介. 6.2多元函数微分学. 6.3多元函数积分学..
第6章 向量代数与空间解析几何 一、内容提要 (一)主要定义
第11章 向量代数与空间解析几何MATLAB求解
第七章 多元微分学 空间曲面与曲线 多元函数的基本概念 偏微商与全微分 多元复合函数及隐函数求导法则 多元函数的极值和最优化问题.
一、曲面及其方程 二、母线平行于坐标轴的柱面方程 三、以坐标轴为旋转轴的旋转曲面 四、小结
第一部分:空间曲面 第二部分:空间曲线.
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
微分几何.
第二章 轨迹与方程 §2.1 平面曲线的方程 §2.2 曲面的方程 §2.3 母线平行于坐标轴的方程 §2.4 空间曲线的方程.
第六节 曲面与空间曲线 一、曲面及其方程 二、 柱 面 三、 旋转曲面 四、 二次曲面 五、 空间曲线的方程.
第六节 曲面及其方程 一 曲面方程的概念 二 旋转曲面 三 柱面 四 二次曲面.
第六章 向量代数与空间解析几何 第一节 空间直角坐标 第二节 矢量代数 第三节 空间中的平面和直线 第四节 二次曲面
第一节 空间解析几何的基本知识 1、空间直角坐标系 2、几种特殊的曲面 3、空间曲线.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
复习 设 1. 向量运算 加减: 数乘: 点积: L.P204~P206 叉积:.
解析几何课件(第四版) 吕林根 许子道等编 第一章 矢量与坐标 第二章 轨迹与方程 第三章 平面与空间直线
第九章 空间解析几何 一、主要内容 二、典型例题.
第四章 向量代数与空间解析几何 前言 同平面解析几何一样,空间解析几何就是通过建立空间直角坐标系,使空间的点与三元有序实数组之间建立起一一对应的关系,并将空间图形与三元方程联系在一起,从而达到用代数方法研究空间几何的目的.因此,空间解析几何的内容也是很重要的,它是学习多元函数微积分的基础.
3.4 空间直线的方程.
第三节 曲面及其方程 一 曲面方程的概念 1 曲面方程是平面解析几何中曲线方程概念的推广:
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第一节 多元函数 空间直角坐标系 多元函数的概念 二元函数的极限 二元函数的连续 小结与思考题.
第9章 向量与空间解析几何 9.1 空间直角坐标系与向量的概念 9.2 向量的数量积与向量积 9.3 平面方程与空间直线方程
第七章 二次型与二次曲面 二次型讨论的对象是多元二次齐次函数,这种函数在物理、统计、规划、极值等问题中有广泛的应用. 例如在三维空间的几何问题中,一般二次曲面在直角坐标系下表示为三元二次函数,通过对二次型的讨论,可以研究二次曲面的分类. 本章主要讨论: 1.  二次型的理论; 2.  空间曲面与曲线;
第八章 空间解析几何 与向量代数 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
第七章 空间解析几何 §5 空间直线及其方程 一、空间直线的一般方程 二、空间直线的对称式方程与参数方程 三、两空间直线的夹角
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
圆锥曲线复习.
练习 1。点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值 范围是 2.点P( )与圆x2+y2=1的位置关系是 ( )
第二讲 曲线与二次曲面 教学目的:曲线和二次曲面 难点: 组合图形的作图 重点:平面、直线和二次曲面的 图形与方程的对应关系.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
圆的一般方程 x2+y2+Dx+Ey+F=0 O C M(x,y).
二次曲面 二次曲面的定义: 三元二次方程所表示的曲面称之为二次曲面. 相应地平面被称为一次曲面. 讨论二次曲面形状的截痕法:
4.3 空间直角坐标系 空间直角坐标系 莆田二十八中 数学组.
第二章 二次函数 第二节 结识抛物线
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
§7.2 直线的方程(1) 1、经过两点P1(x1,y1),P2(x2,y2)的斜率公式: 2、什么是直线的方程?什么是方程的直线?
§1.1空间直角坐标系 一.空间直角坐标系 坐标原点; 坐标轴; 坐标平面。
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
第三单元 第3课 实验 多元函数的积分 实验目的:掌握matlab计算二重积分与三重积分的方法,提高应用重积分解决有关应用问题的能力。
2.3.4 平面与平面垂直的性质.
圆锥曲线的统一定义.
微积分 (I)期末小结 2019/4/25.
3.3 垂径定理 第2课时 垂径定理的逆定理.
§1体积求法 一、旋转体的体积 二、平行截面面积为已知的立体的体积 三、小结.
抛物线的几何性质.
直线和圆的位置关系 ·.
空间平面与平面的 位置关系.
双曲线的性质.
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
第七章 多元函数微积分 第一节 空间解析几何简介 第二节 多元函数的基本概念 第三节 偏导数和全微分 第四节 多元复合函数求导法则
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
双曲线及其标准方程(1).
空间直角坐标系.
空间几何体的结构 第一讲.
复习回顾 条件:不重合、都有斜率 条件:都有斜率 两条直线平行与垂直的判定 平行:对于两条不重合的直线l1、l2,其斜率分别为k1、k2,有
生活中的几何体.
5.1 相交线 (5.1.2 垂线).
第一模块 向量代数与空间解析几何 第六节 二次曲面与空间曲线 一、曲面方程的概念 二、常见的二次曲面及其方程 三、空间曲线的方程
第三章 图形的平移与旋转.
Presentation transcript:

主要内容 1、柱面 2、锥面 3、旋转曲面 4、椭球面 5、双曲面 6、抛物面 第四章 柱面、锥面、旋转曲面与二次曲面 主要内容 1、柱面 2、锥面 3、旋转曲面 4、椭球面 5、双曲面 6、抛物面

第一节 柱面 定义 平行于定直线并沿定曲线 移动的直线 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线,动直线 L 叫柱面的母线. 第一节 柱面 定义 平行于定直线并沿定曲线 移动的直线 所形成的曲面称为柱面. 这条定曲线 C 叫柱面的准线,动直线 L 叫柱面的母线. 设柱面的准线为 母线的方向数为X,Y,Z。如果M1(x1,y1,z1)为准线 上一点,则过点M1的母线方程为

且有 F1(x1,y1,z1)=0,F2(x1,y1,z1)=0 (3) 从(2)(3)中消去x1,y1,z1得 F(x,y,z)=0 这就是以(1)为准线,母线的方向数为X,Y,Z的 柱面的方程。

柱面举例 平面 抛物柱面

y x , z ) ( = F xoy C 从柱面方程看柱面的特征: (其他类推) 实 例 椭圆柱面 母线// 轴 双曲柱面母线// 轴 只含 y x , 而缺 z 的方程 ) ( = F ,在 空间直角坐标系中表示母线平行于 轴的柱 面,其准线为 xoy 面上曲线 C . (其他类推) 实 例 椭圆柱面 母线// 轴 双曲柱面母线// 轴 抛物柱面母线// 轴

例1、柱面的准线方程为 而母线的方向数为-1,0,1,求这柱面的方程。 例2、已知圆柱面的轴为 点(1,-2,1)在此圆柱面上,求这个柱面的方程。

第二节 锥面 一、锥面 1、定义 在空间,通过一定点且与定曲线相交的一族 直线所产生的曲面称为锥面,这些直线都称为锥面的 第二节 锥面 一、锥面 1、定义 在空间,通过一定点且与定曲线相交的一族 直线所产生的曲面称为锥面,这些直线都称为锥面的 母线,定点称为锥面的顶点,定曲线称为锥面的准线。 2、锥面的方程 设锥面的准线为 顶点为A(x0,y0,z0),如果M1(x1,y1,z1)为准线上任一点, 则锥面过点M1的母线为:

且有 F1(x1,y1,z1)=0 F2(x1,y1,z1)=0 (3) 从(2)(3)中消去参数x1,y1,z1得三元方程 F(x,y,z)=0 这就是以(1)为准线,以A为顶点的锥面方程。 例1、求顶点在原点,准线为 的锥面的方程。 (二次锥面) 答:

齐次方程: 设λ为实数,对于函数f(x,y,z),如果有 f(tx,ty,tz)=tλf(x,y,z) 则称f(x,y,z)为λ的齐次函数,f(x,y,z)=0称为齐次 方程。 定理 一个关于x,y,z的齐次方程总表示顶点在坐标 原点的锥面。 圆锥面 例如,方程 x2+y2-z2=0 原点(虚锥面) 又如,方程 x2+y2+z2=0

第三节 旋转曲面 一、. 旋转曲面 1、 定义: 以一条平面曲线C绕其平面上的一条直线旋转一周所成的曲面叫做旋转曲面, 这条定直线叫旋转曲面的轴. 曲线C称为放置曲面的母线 纬线 o C 经线

二、旋转曲面的方程 在空间坐标系中,设旋转曲面的母线为: 旋转直线为: 其中P0(x0,y0,z0)为轴L上一定点,X,Y,Z为旋转轴 L的方向数。 设M1(x1,y1,z1)为母线C上的任意点,则M1的纬圆总 可以看成是过M1且垂直于旋转轴L的平面与以P0为中 心,|P0M1|为半径的球面的交线。

所以过M1的纬圆的方程为: 当点M1跑遍整个母线C时,就得到所有的纬圆, 这些纬圆就生成旋转曲面。 又由于M1在母线上,所以又有: 从(3)(4)的四个等式中消去参数x1,y1,z1,得到一 个三元方程: F(x,y,z)=0 这就是以C为母线,L为旋转轴的旋转曲面的方程。

例1、求直线 绕直线x=y=z旋转所得旋转曲面的方程。 解:设M1(x1,y1,z1)是母线上的任意点,因为旋转轴 通过原点,所以过M1的纬圆方程是: 又由于M1在母线上,所以又有: 即 x1=2y1,z1=1,消去x1,y1,z1得所求旋转曲面的方程: 2(x2+y2+z2)-5(xy+yz+zx)+5(x+y+z)-7=0。

三、母线在坐标面而旋转轴为坐标轴的旋转曲面: 已知yoz面上一条曲线C, 方程为f (y, z) = 0, 曲线C绕 z 轴旋转一周就得一个旋转曲面. 设M1(0, y1`, z1)是C上任意一点, 则有f( y1, z1) = 0 当C绕 z 轴旋转而M1随之转到M (x, y, z)时, 有 将z1 = z, 代入方程F( y1, z1) = 0,

得旋转曲面的方程: 即

规律: 当坐标平面上的曲线C绕此坐标平面的一个坐标 旋转时,要求该旋转曲面的方程,只要将曲线C在 坐标面里的方程保留和旋转轴同名的坐标,而以其 它两个坐标平方和的平方根来代替方程中的另一坐 标。

解 圆锥面方程

例2: 求直线 z = ay 绕 z 轴旋转所得的旋转曲面方程. x y z = ay 解: 将 y 用 代入直线方程, 得 平方得: z2 = a2 ( x2 + y2 ) 该旋转曲面叫做圆锥面, 其顶点在原点.

例3 将下列各曲线绕对应的轴旋转一周,求生成的旋转曲面的方程. (单叶) 旋转双曲面 (双叶)

例4、将圆 绕Z轴旋转,求所得旋转曲面的方程。 解:所求旋转曲面的方程为: 即:(x2+y2+z2+b2-a2)2=4b2(x2+y2) 该曲面称为圆环面。

(长形) 旋转椭球面 (短形) 旋转抛物面

第四节 二次曲面 一、基本内容 二次曲面的定义: 三元二次方程 第四节 二次曲面 一、基本内容 二次曲面的定义: 三元二次方程 ax2 + by2 + cz2 +dxy + exz + fyz + gx + hy + iz +j = 0 所表示的曲面称之为二次曲面. 相应地平面被称为一次曲面. 讨论二次曲面性状的平面截痕法: 用坐标面和平行于坐标面的平面与曲面相截,考察其交线(即截痕)的形状,然后加以综合,从而了解曲面的全貌. 以下用截痕法讨论几种特殊的二次曲面.

2 用平面z = k去截割(要求 |k |  c), 得椭圆 二. 几种常见二次曲面. (一) 椭球面 1 用平面z = 0去截割, 得椭圆 z o x y O 2 用平面z = k去截割(要求 |k |  c), 得椭圆 当 |k |  c 时, |k |越大, 椭圆越小; 当 |k | = c 时, 椭圆退缩成点.

3 类似地, 依次用平面x = 0,平面y = 0截割, 得椭圆: 特别: 当a=b=c时, 方程x2 + y2 + z2 = a2 , 表示球心在原点o, 半径为a的球面.

(二)双曲面 单叶双曲面 (1)用坐标面 与曲面相截 截得中心在原点 的椭圆.

与平面 的交线为椭圆. 当 变动时,这种椭圆的中心都在 轴上. (2)用坐标面 与曲面相截 截得中心在原点的双曲线. 实轴与 轴相合,虚轴与 轴相合.

与平面 的交线为双曲线. 双曲线的中心都在 轴上. 实轴与 轴平行, 虚轴与 轴平行. 实轴与 轴平行, 虚轴与 轴平行. 截痕为一对相交于点 的直线.

截痕为一对相交于点 的直线. (3)用坐标面 , 与曲面相截 均可得双曲线.

平面 的截痕是两对相交直线. 单叶双曲面图形 x y o z

双叶双曲面 x y o

(三)抛物面 ( 与 同号) 椭圆抛物面 用截痕法讨论: 设 (1)用坐标面 与曲面相截 截得一点,即坐标原点 原点也叫椭圆抛物面的顶点.

与平面 的交线为椭圆. 当 变动时,这种椭圆的中心都在 轴上. 与平面 不相交. (2)用坐标面 与曲面相截 截得抛物线

与平面 的交线为抛物线. 它的轴平行于 轴 顶点 (3)用坐标面 , 与曲面相截 均可得抛物线. 同理当 时可类似讨论.

椭圆抛物面的图形如下: z x y o x y z o

特殊地:当 时,方程变为 旋转抛物面 (由 面上的抛物线 绕它的轴旋转而成的) 与平面 的交线为圆. 当 变动时,这种圆的中心都在 轴上.

( 与 同号) 双曲抛物面(马鞍面) 用截痕法讨论: 设 x y z o 图形如下: