第十六章 细胞代谢和基因表达的调控 细胞代谢包括物质代谢和能量代谢。细胞代谢是一个完整统一的网络,并且存在复杂的调节机制,这些调节机制都是在基因表达产物(蛋白质或RNA)的作用下进行的。 重点:物质代谢途径的相互联系,酶活性的调节。

Slides:



Advertisements
Similar presentations
1 学习代谢途径的技巧和要求 反应过程 起始物、终产物、重要中间产物、 重要反应 ( 关键酶催化 的反应、产能与耗能反应、脱羧反应 ) 反应部位 器官,细胞内定位 生理意义 代谢调节 主要调节点,主要变构抑制剂、变构激活剂 各代谢途径之间的联系和调控.
Advertisements

浙江省普陀中学 张海霞 例谈高中生物 一轮复习有效性的提高 一轮复习有效性的提高. 高三生物一轮复习目标? 1 、知识: 提高审题能力 强化、突出主干知识。 易化、突破难点知识。 细化、整理基础知识。 2 、能力: 提高解题技巧 提高表达能力.
第四节 RNA 的空间结构与功能. RNA 的种类和功能 核糖体 RNA ( rRNA ):核蛋白体组成成分 转移 RNA ( tRNA ):转运氨基酸 信使 RNA ( mRNA ):蛋白质合成模板 不均一核 RNA ( hnRNA ):成熟 mRNA 的前体 小核 RNA ( snRNA ):
第七章 氨基酸代谢. NH 2 -CH 2 -COOH + ½ O 2  H-CO-COOH + NH 2 第一节 Amino acid degradation 1. 氧化脱氨基 氨基酸在酶的作用下脱去氨基生成相应酮酸的过 程,叫氧化脱氨基作用 甘氨酸氧化酶 一. 氨的去路.
植物生理 植物细胞生理基础 同工酶. 学习目标 Click to add title in here Click to add title n here  掌握同工酶的概念。  了解同工酶的意义。
第二节 糖的分解代谢 有三条途径: 1. 糖的无氧分解 2 .糖的有氧分解 3. 磷酸戊糖途径.
第二篇 物质代谢及其调节 构成机体的成分 (小分子合成大分子) 合成代谢------需要能量 物质代谢 能量代谢
Metabolism of Carbohydrates
The Way for Regulation of Metabolism
Metabolic Interrelationships & Regulation
第十章 蛋白质降解与氨基酸代谢 (1)蛋白质的降解: 外源蛋白的消化 内源性蛋白的选择性降解 (2)氨基酸的分解代谢:
第十章 物质代谢的 联系与调节.
糖 代 谢.
第九章 糖 代 谢 Chapter 9 Metabolism of carbohydrate
第25章 脂类代谢 一 脂类的酶促降解 二 脂肪的分解代谢 三 脂肪的合成代谢 四 磷脂的代谢 五 胆固醇的代谢.
葡萄糖 合成 肌糖元 第六节 人和动物体内三大营养物质的代谢 一、糖类代谢 1、来源:主要是淀粉,另有少量蔗糖、乳糖等。
第九章 糖 代 谢.
第29章 脂类的生物合成 脂类物质的功能: (1)贮存能量:脂肪 (2)细胞膜成分:磷脂,胆固醇 (3)特殊脂类具有的活性:维D,
第30章 蛋白质的降解和氨基酸的分解代谢.
上节课内容: 糖的有氧分解 第一阶段是葡萄糖分解为丙酮酸 第二阶段是丙酮酸进入线粒体氧化脱羧生成乙酰CoA 第三阶段是柠檬酸循环
第十五章 细胞代谢调控 物质代谢途径的相互联系 代谢的调节.
第30章 蛋白质的降解 及氨基酸的分解代谢.
11 糖代谢中的其它途径.
第十章 糖代谢(2) Glycometabolism 河北科技大学生工学院 生物化学教研组.
糖代谢中的其它途径.
Metabolism of Carbohydrates
第七节 维生素与辅因子.
第三章 糖代谢 第一节 概述 第二节 糖酵解 第三节 三羧酸循环 第四节 磷酸戊糖途径 第五节 糖异生 第六节 糖原合成与分解.
第九章 脂类代谢 脂肪的分解代谢 脂肪的生物合成.
+ β氧化 4.2脂肪酸的其他氧化途径 1.α氧化(不需活化,直接氧化游离脂肪酸) 2.ω氧化( ω端的甲基羟基化,氧化成醛,再氧化成酸)
第 九 章 物质代谢的联系与调节 Metabolic Interrelationships and Regulation.
Metabolic Interrelationships and Regulation
Metabolic network and regulation
生命的物质基础.
第八章 原核细胞的基因表达调控 第一节 基因表达调控概述 一.原核生物基因表达调控的特点 生物体内基因表达的调节控制机制,使细胞中基因表达
第十六章 基因表达调控 (Regulation of Gene Expression)
基因的表达 凌通课件.
生物技术一班 游琼英
目录 Section 1. 代谢总览 Section 2. 代谢途径的整合 Section 3. 组织水平的代谢途径
第25章、戊糖途径(HMS)和糖原生成.
4 细胞代谢 细胞呼吸 光合作用.
第四章 柠檬酸发酵机制 性质: 分子式C6H8O7,分子量 有两种形式
Metabolic Interrelationships
物质代谢的相互联系.
生物化学习题.
第九章 物质代谢的联系与调节 Interrelationships & Regulations of Metabolism.
糖代谢的概况 主要途径:1. 糖酵解(糖的无氧氧化) 2. 柠檬酸循环(糖的有氧氧化) 3. 磷酸戊糖途径 (二) 合成代谢:
第十一章 脂类代谢.
Metabolism of Carbohydrates
第二节 糖酵解 glycolysis Louis Pasteur in his laboratory.
第 四 章 糖代谢 Metabolism of Carbohydrates.
第四章 糖代谢 新陈代谢概述 糖酵解 三羧酸循环 戊糖磷酸途径 糖醛酸途径 糖异生.
第四章 糖代谢 一、代谢总论 Metabolism 二、多糖和寡聚糖的酶促降解 三、糖的无氧降解及厌氧发酵 四、葡萄糖的有氧分解代谢
Metabolic Interrelationships and Regulation
第23章 糖异生和其他代谢路径 由非糖物质转变为葡萄糖或糖原的过程称为糖异生(gluconeogenesis)。
第 八 章 脂 类 代 谢.
李载权老师教学平台页面 登陆说明: 应用药学学生账号为学号后七位,密码为 药学学生账号为学号,密码也为学号;
ATP SLYTYZJAM.
第九章 物质代谢的联系与调节 Interrelationships & Regulations of Metabolism
第十六章 基因表达调控 (Regulation of Gene Expression)
第9章 糖代谢 主讲教师:卢涛.
基因表达的调控.
超越自然还是带来毁灭 “人造生命”令全世界不安
Carbohydrate Metabolism
四、胞液中NADH的氧化 1. -磷酸甘油穿梭作用: 存在脑和骨骼中.
有关“ATP结构” 的会考复习.
光合作用的过程 主讲:尹冬静.
基因信息的传递.
第三节 转录后修饰.
Tel: 环境微生物学 侯森 暨南大学环境学院 Tel:
Presentation transcript:

第十六章 细胞代谢和基因表达的调控 细胞代谢包括物质代谢和能量代谢。细胞代谢是一个完整统一的网络,并且存在复杂的调节机制,这些调节机制都是在基因表达产物(蛋白质或RNA)的作用下进行的。 重点:物质代谢途径的相互联系,酶活性的调节。

第一节               物质代谢途径的相互联系 细胞代谢的基本原则是将各类物质分别纳入各自的共同代谢途径,以少数种类的反应转化种类繁多的分子。不同代谢途径可以通过交叉点上关键的中间物而相互转化,其中三个关键的中间物是G-6-P、丙酮酸、乙酰CoA。 一、  糖代谢与脂代谢的联系 1、   糖转变成脂 图   糖经过酵解,生成磷酸二羟丙酮及丙酮酸。磷酸二羟丙酮还原为甘油,丙酮酸氧化脱羧转变成乙酰CoA,合成脂肪酸。 2、   脂转变成糖 甘油经磷酸化为3-磷酸甘油,转变为磷酸二羟丙酮,异生为糖。 在植物、细菌中,脂肪酸转化成乙酰CoA,后者经乙醛酸循环生成琥珀酸,进入TCA,由草酰乙酸脱羧生成丙酮酸,生糖。 动物体内,无乙醛酸循环,乙酰CoA进入TCA氧化,生成CO2和H2O。 脂肪酸在动物体内也可以转变成糖,但此时必需要有其他来源的物质补充TCA中消耗的有机酸(草酰乙酸)。 糖利用受阻,依靠脂类物质供能量,脂肪动员,在肝中产生大量酮体(丙酮、乙酰乙酸、β-羟基丁酸)。

二、  糖代谢与氨基酸代谢的关系 1、   糖的分解代谢为氨基酸合成提供碳架 图 糖 → 丙酮酸 → α-酮戊二酸 + 草酰乙酸 这三种酮酸,经过转氨作用分别生成Ala、Glu和Asp。 2、   生糖氨基酸的碳架可以转变成糖 凡是能生成丙酮酸、α—酮戊二酸、琥珀酸、草酰乙酸的a.a,称为生糖a.a。 Phe、Tyr、Ilr、Lys、Trp等可生成乙酰乙酰CoA,从而生成酮体。 Phe、Tyr等生糖及生酮。 三、  氨基酸代谢与脂代谢的关系 氨基酸的碳架都可以最终转变成乙酰CoA,可以用于脂肪酸和胆甾醇的合成。 生糖a.a的碳架可以转变成甘油。 Ser可以转变成胆胺和胆碱,合成脑磷脂和卵磷脂。 动物体内脂肪酸的降解产物乙酰CoA,不能为a.a合成提供净碳架。 脂类分子中的甘油可以转变为丙酮酸,经TCA进一步转变为草酰乙酸、α—酮戊二酸,这三者都可以转变成氨基酸。

四、  核苷酸代谢与糖、脂、氨基酸的关系 核苷酸不是重要的碳源、氮源和能源。 各种氨基酸,如Gly 、Asp 、Gln是核苷酸的合成前体。 有些核苷酸在物质代谢中也有重要作用: ATP 供能及磷酸基团。 UTP 参与单糖转变成多糖(活化单糖)。 CTP 参与卵磷脂合成。 GTP 为蛋白质合成供能。

五、  物质代谢的特点 1、   TCA是中心环节 代谢途径交叉形成网络,主要联系物:丙酮酸、乙酰CoA、柠檬酸、α-酮戊二酸、草酰乙酸。 2、   分解、合成途径往往是分开的,不是简单的逆反应。 在一条代谢途径中,某些关键部位的正反应和逆反应,往往由两种不同的酶催化,一种酶催化正反应,另一种酶催化逆反应。 以糖代谢为例: P421   3、   ATP是通用的能量载体 乙酰CoA进入TCA后,完全氧化生成CO2、H2O,释放的自由能被ADP捕获转运。否则,自由能以热能形式散发到周围环境中。

4、   分解为合成提供还原力和能量 物质代谢的基本要略在于:生成ATP、还原力和结构单元用于体内生物合成。 NADPH专一用于还原性生物合成,NADH和FADH2主要功能是通过呼吸链产生ATP。 ATP来源:(1)底物水平磷酸化、(2)绿色植物和光合细菌的光合磷酸化、(3)呼吸链的氧化磷酸化。 NADPH来源: (1)植物光合电子传递链 (2)磷酸戊糖途径 (3)乙酰CoA由线粒体转移到细胞质时伴随有NADH的氧化和NADP+的还原,所产生的NADPH可用于脂肪酸合成 P422图22-4   有机物分解产生构造草料和能量大致可以分三个阶段:P423 图22-5 (1)将大分子分解为小分子单元,释放的能量不能被利用。 (2)将各种小分子单元分解为共同的降解产物乙酰CoA,产生还原力NADPH和少量ATP。 (3)乙酰CoA通过TCA被完全氧化成CO2,脱下的电子经氧化磷酸化产生大量的ATP。

5、   分解、合成受不同方式调节 单向代谢的反馈调节 顺序反馈控 分枝代谢的反馈调节 对同工酶的反馈抑制 协同反馈抑制  

第二节               代谢调节 代谢调节是生物长期进化过程中,为适应环境的变化的而形成的一种适应能力。进化程度越高的生物,其代谢调节的机制越复杂、越完善。 生物代谢调节在三个水平上进行,即酶水平、细胞水平、多细胞整体水平(神经、激素)。酶和细胞水平的调节,是最基本的调节方式,为一切生物所共有。

神经水平调节   动 物 激素水平调节 植 细胞水平调节 酶水平调节 单细胞生物

神经调节:整体的、最高级的调节。 激素调节:受神经调节控制。第二级调节。 酶调节:原始的、基本的调节。第三级调节。 酶水平的调节:酶活性调节(酶原激活、别构效应、共价修饰)和酶含量(基因表达调控) 一、  酶水平的调节 酶水平的调节,主要通过酶定位的区域化、酶活性的调节、酶含量的调节,这三个方面进行。

1、   酶定位的区域化 酶在细胞内有一定的布局和定位。催化不同代谢途径的酶类,往往分别组成各种多酶体系。多酶体系存在于一定的亚细胞结构区域中,或存在于胞质中,这种现象称为酶的区域化。 功能:浓缩效应,防止干扰,便于调节。 ⑴多酶体系在细胞中区域化,为酶水平的调节创造了有利条件,使某些调节因素可以专一地影响细胞内某一部分的酶活性,而不致影响其它部位酶的活性。 ⑵此外,酶定位的区域化,使它与底物和辅助在细胞器内一起相对浓缩,利于在细胞局部范围内快速进行各个代谢反应。 主要代谢途径酶系在细胞内的分布: 胞质:糖酵解,糖原合成,磷酸成糖途径,脂肪酸合成,部分蛋白质合成。 线粒体:脂肪酸β氧化,三羧酸循环,呼吸链,氧化磷酸化。 细胞核:核酸的合成、修饰。 内质网:蛋白质合成,磷脂合成。 胞质和线粒体:糖异生,胆固醇合成 溶酶体:多种水解酶

2、   酶活性的调节 调节方式:酶原的激活 pH改变,如溶菌酶。pH7,无活性。pH5,活性高。 同工酶 共价修饰 反馈调节(生物体内最重要) 特点:调节快速、灵敏,数秒至数分钟可完成。 (1)、    共价修饰和级联放大 P430图22-14 磷酸化/脱磷酸化 腺苷酰化/脱腺苷酰化 (2)、    前馈和反馈调节 前馈调节:底物对酶活性的调节,一般是前馈激活,但也可能是前馈抑制。当底物浓度过高时可避免该代谢途径的过分拥挤和产物的大量合成,如高浓度的乙酰CoA是乙酰CoA羧化酶的别构抑制剂,可避免丙二酸单酰CoA大量合成。 反馈调节:产物对酶活性的调节,一般是反馈抑制,但也有反馈激活。

a.反馈抑制 单价反馈抑制 多价反馈抑制 当序列终产物浓度积累过多时,会抑制初始反应的酶活性,使整个体系反应速度降低。 b. 顺序反馈抑制 c. 协同反馈抑制 d. 累积反馈抑制 e. 同工酶反馈抑制 f. 反馈激活和前馈激活 (3)、    反馈激活: (4)、    前馈激活: 如在糖酵解中,1.6—二磷酸果糖,可提高后面丙酮酸激酶的活性,加速磷酸烯醇式丙酮酸转变为丙酮酸。 如当丙酮酸不能经乙酰CoA进入TCA时,丙酮酸积累,磷酸烯醇式丙酮酸转化成草酰乙酸,后者可合成a.a和嘧啶核苷酸。合成出的嘧啶核苷酸,反馈激活磷酸烯醇丙酮酸羧化酶,促进草酰乙酸合成,保证TCA对草酰乙酸的需要。 3、   酶合成的调节(基因表达的调节) 酶合成调节,是通过酶量的变化来调控代谢速率。

二、  细胞水平的调节 (1)控制跨膜离子浓度剃度和电位梯度 (2)控制跨膜物质运输 (3)区隔化:浓缩作用,防止干扰,便于调节 (4)膜与酶可逆结合: 双关酶:能与膜可逆结合,通过膜结合型和可溶型的互变来调节酶的活性。双关酶大多是代谢途径的关键酶和调节酶,如糖酵解中的己糖激酶,磷酸果糖激酶,醛缩酶,3-磷酸甘油醛脱氢酶,氨基酸代谢的Glu脱氢酶,Tyr氧化酶:参与共价修饰的蛋白激酶,蛋白磷酸脂酶等。 三、  激素水平的调节

第一节                              基因表达的调节 基因表达有几个水平的调节 ⑴转录水平 ⑵翻泽水平 ⑶加工水平 转录后加工、翻译后加工 ⑷蛋白质活性调节 其中最关键的是⑴,基因表达的控制主要发生在转录水平,原核生物尤其如此。 时序调节 适应调节 一、    原核生物基因表达的调节 1、      纵子模型 操纵子是基因表达的协调单位,它含有在功能上彼此有关的多个结构基因及控制位,控制部位由启动子和操纵基因组成。 一个操纵子的全部基因排列在一起,其中含多个结构基因,转录产物是单个多顺反mRNA,操纵子的控制部位可受调节基因产物的调节。 2、      组成型基因和诱导型基因 组成酶(构成酶),受环境影响小,正常代谢条件下表达。如糖酵解的酶。 诱导酶(适应型酶),对不同的生存环境有不同的表达。如半乳糖苷酶。

3、      正调控和负调控 在没有调节蛋白质存在时,基因是关闭的,加入调节蛋白后,基因活性被开启,此为正调控。 在没有调节蛋白存在时,基因是表达的,加入调节蛋白后基因表达活必被关闭,此为负调控。 在正调控中,调节蛋白称诱导蛋白。 在负调控中,调节蛋白称阻遇蛋白。 4、      原核生物结构基因表达的4种控制模式。 负调控:诱导作用,应使阻遇蛋白解离DNA。 阻遇作用,应使阻遇蛋白结合DNA。 P451图22-25   正调控:诱导作用,应使诱导蛋白结合DNA。 阻遇作用,应使诱导蛋白解离DNA。 图片9-1 《杨歧生》 P272

5、      大肠杆菌乳糖操纵子 Lac操纵子 结构图: P453 图22-26   LacZ、LacY、LacA为结构基因,上游依次为操纵基因、启动子和调节基因LacI。 当细胞内无诱导物(乳糖或IPTG)存在时,阻遏蛋白与操纵基因结合。由于操纵基因与启动子有一定程度重叠,妨碍了RNA聚合酶在-10序列上形成开放性启动子复合物。 当细胞内有诱导物(乳糖或IPTG)存在时,诱导物与阻遏蛋白结合,改变阻遏蛋白构象,使之迅速从操纵基因上解离下来。这样RNA聚合酶就能与启动子结合,并形成开放性启动子复合物,从而开始转录LacZYA结构基因。 图片8-3《孙乃恩》P 285 IPTG:异丙基-β-D硫代半乳糖苷(安慰诱导物),能对乳糖操纵子产生极强的诱导效应,是强诱导物。

6、      色氨酸操纵子(trp)的转录调控 trp操纵子负责Trp的合成,通常是开放的,调节基因的产物使它关闭,这种调控作用称为可阻遏型的负调控。 ⑴E.coli trp操纵子有5个结构基因,trpE-D-C-B-A。 ⑵在trpE的上游有三个区段trpP-O-L, trpL是一段162bp序列,转录到mRNA中成为前导序列,对操纵子的转录起调控作用。 ⑶在染色体90分区有trpR基因,编码12.5kd的阻遏蛋白亚基,能以四聚体形式结合到trpO。 TrpP与一般原核基因启动子一样,具有-10序列和-35序列,-10序列完全位于trpP之内。 E.coli trp操纵子的组成及基因产物的功能。 图片:   E.coli 具有合成各种a.a的能力。在多数情况下,只有在培养基不供应外源a.a时,才去合成产生该a.a所必须的酶系。 当细胞内Trp浓度较高时,Trp与阻遏蛋白(trpR基因产物)结合,产使它具有活性,从而与trpO基因结合,关闭转录。 当细胞内Trp浓度很低时,阻遏遇蛋白上的Trp解离出来,使阻遏蛋白失活,并失去与trpO结合的能力,开启转录。

7、      trp操纵子的前导序列 trp mRNA分子一旦开始合成,在trpE基因开始转录之前,大多数mRNA会停止生长,这是因为前导序列(trpL)对操纵子调控发挥了重要作用。 trp mRNA的前导序列及前导肽。 结构基因上游具有:启动子—操纵基因—前导序列—衰减子区。 mRNA 5,端有162b,其中139个构成前导序列。前导序列由14个a.a的前导肽、4个互补区段和1个衰减子终止点构成。 衰减子:位于结构基因上游前导区的终止信号。

前导序列的特点: ⑴前导序列的某些区段富含GC。尾部有一个含8个U的区段,易极成不依赖于ρ的终止信号。(3区与4区构成终止信号的发夹结构) ⑵1区和2区构成第二个发夹结构,其中1区处于14个a.a的前导肽序列中。 ⑶3区与2区也能形成另一个发夹结构,从而可阻止3区与4区形成终止发夹结构。 ⑷前导序列RNA编码一段14a.a的前导肽,并有一终止密码子UGA

⑸前导序列中,并列二个Trp密码子. 在mRNA合成过程中,1区与2区若先配对,则3区与4区配对,终止转录. 图片: 阻遏和衰减机制,虽然都是在转录水平上进行调节,但是它们的作用机制完全不同,前者控制转录的起始,后者控制转录起始后是否继续下去。 氨基酸合成操纵子前导肽序列 P454表22-2   生长速度调节: 严紧控制 基因表达时序调节: 翻译水平调节:

二、 真核基因表达的调节