剪力墙结构的分析和设计 邵 弘.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
第三章 地震作用和结构抗震验算 广东工业大学建设学院 韦爱凤.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
第十二章 建筑结构抗震基本知识 第 二 讲 教学目标: 1.了解多层及高层钢筋混凝土房屋的抗震措施;了解
第六章 高层建筑结构荷载作用与结构设计原则
教学情境四:建筑结构抗震 任务1、钢筋混凝土结构抗震 任务2、砌体结构抗震.
成人高等学历教育 毕 业 设 计 广州某大学学生宿舍结构设计(方案22)
根据市城乡建委组织的勘察设计质量检查及施工图审查项目动态检查中发现的问题,进行分析,讨论。
梁构件分类 框架梁等03G101-1 KL、WKL、KZL、L、JZL、XL 基础梁04G101-3 JZL、JCL
第五章 多高层建筑钢筋混凝土结构抗震设计.
框架梁纵向钢筋长度计算 ——通长钢筋长度计算 主讲:吕文晓.
第五章 钢筋混凝土框架结构房屋抗震设计.
第四章 多层和高层钢筋混凝土结构房屋 多层和高层钢筋混凝土结构体系包括:
青岛理工大学土木工程学院.
结构抗震设计 第4章 多高层钢筋混凝土结构抗震设计.
第3章 地震作用与结构抗震验算 3.1 概述 确定地震作用的重要性
常用逻辑用语复习课 李娟.
第八章 剪力墙结构简化计算 —内力计算 广东工业大学建设学院 韦爱凤.
第三章 筏形基础 设计计算:地基计算、内力分析、强度计算、以及构造要求等。 荷载准永久组合 非抗震设防 非抗震设计整体倾斜.
贵州省凯里市某办公楼设计 姓名:赵家顺 学号: 班级:土木(2)班 指导教师:白晓冬 设计结构:框架结构 设计内容:
第五章 剪力墙结构 5.1 剪力墙结构的基础知识 抗震墙的尺寸:抗震墙的厚度要求及与之相对应的竖向和横向分布钢筋要求
第 4 章 多层及高层房屋结构 主要内容: 4.1 多、高层房屋结构的组成 4.2 楼盖的布置方案和设计 4.3 柱和支撑的设计
第章 9 钢筋混凝多层与高层结构 思考题.
学 院:建筑工程学院 专 业:08土木工程 姓 名: 指导教师:
Reinforced Concrete Frame
第二章:建筑工程量的计算 钢筋混凝土暗柱工程量的计算实例.
钢筋砼条形基础特点 及适用范围、构造要求.
剪力墙钢筋计算.
第4章 设计要求 教学提示:本章介绍了高层建筑结构平、立面布置的基本原则,不规则结构以及结构抗震的相关概念,说明了包括承载能力、侧移限制、舒适度及稳定等方面的总体设计要求;以及高层建筑荷载效应组合方法。 教学要求:本章要求学生理解结构抗震的相关概念,熟悉高层建筑的设计要求,掌握荷载效应组合的基本原则,各种工况的区别及其应用。 
课程内容 1.基础篇(30学时) 高层建筑结构的基本概念、结构设计的基本理论;常规高层建筑结构在荷载(主要是水平荷载)作用下的内力和位移计算方法——传统手算法、常规电算法。包括: 高层建筑的发展概况 高层建筑的结构体系与布置 框架结构、剪力墙、框-剪、底部大空间剪力墙结构的内力和位 移的手算方法 扭转和斜交结构的近似手算方法.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
第三篇 组织工作.
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
ACD/ChemSketch软件在有机化学教学中的简单应用
面向对象建模技术 软件工程系 林 琳.
第三章 辐射 学习单元2 太阳辐射.
3.1 习 题(第三章)
第4章 非线性规划 4.5 约束最优化方法 2019/4/6 山东大学 软件学院.
实数与向量的积.
Three stability circuits analysis with TINA-TI
VisComposer 2019/4/17.
第5章 框架、剪力墙、框架—剪力墙结构的近似计算方法与设计概念
工业机器人知识要点解析 (ABB机器人) 主讲人:王老师
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
第六章 Excel的应用 一、Excel的单元格与区域 1、单元格:H8, D7, IV26等 2、区域:H2..D8, HS98:IT77
第4章 Excel电子表格制作软件 4.4 函数(一).
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
函 数 连 续 的 概 念 淮南职业技术学院.
相关与回归 非确定关系 在宏观上存在关系,但并未精确到可以用函数关系来表达。青少年身高与年龄,体重与体表面积 非确定关系:
位移法 —— 例题 主讲教师:戴萍.
学习任务三 偏导数 结合一元函数的导数学习二元函数的偏导数是非常有用的. 要求了解二元函数的偏导数的定义, 掌握二元函数偏导数的计算.
1.非线性规划模型 2.非线性规划的Matlab形式
静定结构位移计算 ——应用 主讲教师:戴萍.
GIS基本功能 数据存储 与管理 数据采集 数据处理 与编辑 空间查询 空间查询 GIS能做什么? 与分析 叠加分析 缓冲区分析 网络分析
静定结构的受力分析 —多跨静定梁 主讲教师:戴萍.
滤波减速器的体积优化 仵凡 Advanced Design Group.
基于列存储的RDF数据管理 朱敏
本底对汞原子第一激发能测量的影响 钱振宇
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第十七讲 密码执行(1).
第7章 钢筋混凝土剪力墙设计 7.1 概述 剪力墙侧向刚度大 、承载能力大、是结构体系中的主要的抗侧力结构单元。 实体墙: 整体墙
结构施工图识读——框架扁梁制图规则及识读
Presentation transcript:

剪力墙结构的分析和设计 邵 弘

1。短肢剪力墙结构的控制和设计 2。剪力墙边缘构件设计及配筋控制

1。短肢剪力墙结构的控制和设计 1.1。短肢剪力墙的特点及其与异形柱的区别 1.2。短肢剪力墙结构的界定方法 1.3。短肢剪力墙结构的设计 1.4。短肢剪力墙结构与转换层结构的混合设计讨论

1.1。短肢剪力墙的特点及其与异形柱的区别 对于12~16层的小高层建筑结构,采用既可以保证结构的刚度、位移,又可以使室内空间方正合理。所以短肢剪力墙结构得以普遍应用。 短肢剪力墙的受力、变形特征,类似以框剪结构。但比框架结构的刚度分配、内力分配更合理,结构的变形协调导致的竖向位移差别,也比框剪结构小,则传基础荷载更均匀、合理。

短肢墙与异形柱的区别 截面尺寸: 柱:H/B < 3;(单肢) 异形柱:H/B < 5;(一般柱肢数≤两肢) 短肢剪力墙:5 < H/B < 8; (墙肢数≤两肢) 剪力墙:H/B > 8。(不限) 当有大于两肢的短肢墙或异形柱时,尽管各肢的长宽比符合要求,也宜按墙输入、设计。

1.2。短肢剪力墙结构的界定方法 规程相关规定:高规第7.1.2条规定了高层建筑结构不应采用全部短肢剪力墙的剪力墙结构。短肢剪力墙较多时,应布置筒体(或一般剪力墙),形成短肢剪力墙与筒体(或一般剪力墙)共同抵抗水平力的剪力墙结构,并且应符合一系列规定。第7.1.3条规定了B级高度高层建筑和9度抗震设计的A级高度高层建筑,不应采用第7.1.2条规定的具有较多短肢剪力墙的剪力墙结构。

短肢剪力墙结构的定义:(1)短肢剪力墙是指墙肢截面高度与厚度之比为5~8的剪力墙;(2)高层建筑结构不应采用全部短肢剪力墙的剪力墙结构;(3)短肢剪力墙较多时,应布置筒体(或一般剪力墙),形成短肢剪力墙与筒体(或一般剪力墙)共同抵抗水平力的剪力墙结构。 短肢剪力墙结构的必要条件:抗震设计时,短肢墙承受的第一振型底部地震倾覆力矩不大于结构总底部地震倾覆力矩的 50%。 短肢剪力墙结构的下限:当短肢墙较少时,如短肢墙承受的第一振型底部地震倾覆力矩小于结构总底部地震倾覆力矩的 15%~ 40%,则可以按普通剪力墙结构设计。下限规范没有规定,用户可以灵活掌握。

短肢剪力墙结构的应用范围 B级高度高层建筑和 9度抗震设计的 A级高度高层建筑,即使置筒体,也不能采用。 其最大适用高度比高规表4.2.2-1中剪力墙结构的规定值适当降低,且7度和8度抗震设计时分别不应大于100m和60m。 如果在剪力墙结构中,只有个别小墙肢,不应看成短肢剪力墙结构而应作为一般剪力墙结构处理。

短肢剪力墙结构,其首先应是全剪力墙结构。 短肢剪力墙结构中,应有足够的长肢剪力墙。 如果把短肢墙看成异形柱,则短肢剪力墙结构可以认为呈框剪结构的变形特征。 当结构形式符合短肢剪力墙结构形式后,才能在软件“总信息”参数的结构体系中,定义结构为“短肢剪力墙结构”。 当采用壳元模型时,应加细单元的划分。 短肢剪力墙结构有时用薄壁杆元(TAT)可能更合适。因短肢墙的模型更符合薄壁杆元模型,采用壳元则有单元划分不细的问题。

短肢剪力墙结构的变形特征 框剪或短肢剪力墙结构 的楼层位移曲线 框架或短肢墙的楼层位移曲线 剪力墙的楼层位移曲线

都是短肢墙不一定属于短肢剪力墙结构

典型的短肢剪力墙结构——中间有核心筒

底部倾覆弯矩不满足规范——大于50%

1.3。短肢剪力墙结构的设计 短肢墙与异形柱的设计区别: 异形柱:轴压比(按框架柱)、刚度(梁考虑刚域)、配筋(双偏压)、构造(按异形柱规程)。 短肢墙:轴压比(按剪力墙)、刚度(墙输入、采用壳元或薄壁杆元)、配筋(按剪力墙)、构造(按高规的短肢墙构造)。

超短肢墙的处理 弱短肢剪力墙(截面高厚之比小于5的墙肢):高规7.2.5条文规定了不宜采用墙肢截面高度与厚度之比小于为5的剪力墙;当其小于5时,其在重力荷载代表值作用下产生的轴力设计值的轴压比,抗震等级为一级(9度)、一级(7、8度)、二级、三级时分别不宜大于0.3、0.4、0.5和0.6。 短墙(截面高度之比不大于3的墙肢) :高规7.2.5条文和抗震规范6.4.9条文规定剪力墙的截面高度与厚度之比不大于3时,应按柱的要求进行设计,底部加强部位纵向钢筋的配筋率不应小于1.2%,其它部位不应小于1.0%,箍筋应沿全高加密。

总结——短肢剪力墙结构的抗震加强 抗震设计时,短肢剪力墙的抗震等级应比高规4.8.2规定的剪力墙的抗震等级提高一级采用。 抗震设计时,各层短肢剪力墙在重力荷载代表值作用下产生的轴力设计值的轴压比,抗震等级为一、二、三时分别不宜大于0.5、0.6和0.7;对于无翼缘或端柱的一字形短肢剪力墙,其轴压比限值相应降低0.1。 抗震设计时,除底部加强部位应按高规7.2.10条调整剪力设计值外,其它各层短肢剪力墙的剪力设计值,一、二级抗震等级应分别乘以增大系数1.4和1.2。 抗震设计时,短肢剪力墙截面的全部纵向钢筋的配筋率,底部加强部位不宜小于1.2%,其它部位不宜小于1.0%。

短肢剪力墙截面厚度不应小于200mm。 7度和8度抗震设计时,短肢剪力墙宜设置翼缘。一字形短肢剪力墙平面外不宜布置与之单侧相交的楼面梁。 高规7.2.1条文规定了带有筒体和短肢剪力墙的剪力墙结构的混凝土强度等级不应低于C25。

21层短肢墙结构

短肢墙所占倾覆弯矩的比例

1.4。短肢剪力墙结构与转换层结构的混合设计讨论 混合的结构类型,给设计来混淆,虽然不提倡,但是实际工程确实不时遇到。典型案例:下部是转换层结构,上部是短肢剪力墙结构。 该结构类型的判断基于以下方面: 1。短肢墙被下部托梁抬起,上下不连续,结构整体变形特征不符合短肢剪力墙(框剪)结构的形式。 2。控制短肢剪力墙结构的倾覆弯矩失去依据,因为要求短肢墙上下连续,且下部短肢墙所占倾覆弯矩小于50%,此时所要求的“下部”已经失去。

3。在加强区,“复杂高层结构”的设计要比“短肢剪力墙”结构严得多。结构的薄弱部位也是在底部转换层区,所以这类结构应该按“复杂高层结构”来设计。 4。转换层上部剪力墙应按框支剪力墙结构的要求,设置加强钢筋。 5。对于非加强区部位的短肢墙设计,可以参考“短肢剪力墙结构”的要求,适当加强构造。当然,也可以按短肢剪力墙结构设计的要求设计。

21层底部框支上部短肢墙结构——按复杂高层设计

短肢墙平面

加强区配筋简图

非加强区配筋简图 按复杂高层设计配筋小些

上部非加强区配筋简图——按短肢墙设计 按短肢墙设计配筋大些

总结 下部转换层上部短肢剪力墙结构,其加强区应按框支剪力墙结构的要求设计。 非加强区没有特殊要求也可以按复杂高层设计,有特殊要求,可以按短肢剪力墙结构设计加强。 结构的位移控制、转换层强制薄弱层、转换梁、框支柱、配筋构造等等,均应按“复杂高层结构”控制、设计。

2。剪力墙边缘构件设计及配筋控制 2.1。剪力墙边缘构件的设置要求 2.2。剪力墙配筋存在的问题 2.3。剪力墙边缘构件的设计

2.1。剪力墙边缘构件的设置要求 高规的7.2.15条规定:抗震设计时,一、二级剪力墙结构底部加强部位及以上一层的墙肢设置约束边缘构件,一、二级剪力墙的其它部位以及三、四级和非抗震设计的剪力墙墙肢均应设置构造边缘构件。 对于这两类边缘构件,程序都可以通过自动搜索确定。边缘构件的一些特征尺寸、主筋面积、箍筋面积或者配箍率,用户都可以在边缘构件简图中看到。

约束边缘构件的规范的要求

边缘构件的配筋 新规范程序对于剪力墙配筋结果的表示提供两张图,一张是配筋简图中对于各个直线剪力墙段的配筋结果,另一张是边缘构件配筋结果。值得注意的是:直线剪力墙段的暗柱主筋给出的是计算值,如果计算值小于零则取零,并不考虑构造要求;而边缘构件简图中的配筋结果则同时考虑了钢筋计算值和构造值,也即二者当中取大。简言之,剪力墙的配筋结果以边缘构件简图为准,直线剪力墙段的配筋图仅供校核之用。

按单肢墙配筋的剪力墙配筋简图

形成边缘构件的配筋

2.2。剪力墙配筋存在的问题 由于一般采取直线段配筋模式,所以产生以下问题: 对超长直线段墙,采用平截面假定配筋,截面刚度估计偏大,配筋偏小。尤其是地下室外墙的配筋问题。而把长墙分段配筋也是没有依据的。 对有面外墙相连的直线段墙,没有考虑面外墙的翼缘作用,如果考虑翼缘作用,则配筋将减少。 对弧墙的配筋,目前没有好的办法。 当有边框柱与墙相连时,没有考虑边框柱与墙的共同工作,使得边框柱和与之相连的剪力墙配筋都偏大。

边缘构件配筋存在的问题 L形边缘构件的配筋,是两个墙肢配筋的叠加,这样L形边缘构件的配筋将偏大。 带边框柱的边缘构件配筋,是柱配筋与墙配筋的叠加,则这样的边缘构件配筋也偏大。 弧墙的边缘构件配筋,有时生成得不对,要注意察看、复核。 超长墙产生的边缘构件,由于受到配筋合理性的影响,也需要复核。 对于多肢斜交墙肢的端部,是多个墙肢配筋的叠加,造成这个边缘构件配筋很大,须注意。

超长墙的配筋

超长墙分段配筋

L形边缘构件的配筋

弧墙的配筋

多肢斜交边缘构件的配筋

边框柱的配筋

由此产生的边缘构件的配筋

2.3。剪力墙边缘构件的设计 加强区约束边缘构件——剪力墙加强区及约束边缘构件的确定: 加强区按要求取1/8~1/10的结构总高度,并不小于2层。 在加强区及以上一层为约束边缘构件。 加强区的设计调整系数与非加强区不同。 地下室程序自动认为是加强区,也可用人工指定加强区的起算层号的手段来指定地下室为非加强区。 有地下室时,程序自动扣除地下室的高度计算加强区。

边缘构件设计注意事项 当两个边缘构件靠的很近时,程序会自动考虑合并。 边框柱作为剪力墙的一部分与墙共同工作,边框柱按柱配筋作为参考。 边缘构件的配筋,尤其是L形端部,按分段直线段配筋有时过大,可以考虑钢筋的共用,如考虑翼缘的作用,两个方向的配筋可以取大值,至少可以减去中间部分的钢筋面积。 边缘构件中的箍筋按构造要求配置,尤其是一、二级抗震等级的边缘构件。

剪力墙加强区起算层号

加强区层数,下部要扣除“起算层号”

单肢墙的轴压比

L形边缘构件的配筋可以适当减少

带边框柱的边缘构件的配筋可以减少

多肢斜交边缘构件的配筋可以减少

三、剪力墙的刚度和地震作用 为什么剪力墙结构配筋容易超限? 剪力墙结构的特点是:刚度大、地震作用大,墙的长度变化较大,造成刚度不均匀性较大,地震力容易集中,造成局部设计超限。且不容易调整。 要调整、改善剪力墙结构的设计,主要从调整刚度入手。如果地震作用很大,则再增加截面和材料强度也是收效甚微的。 短一些的墙肢、或墙肢长度均匀,可以部分弥补这些缺点。而采用短肢剪力墙结构,由于肢长太短,又带来新的问题。

墙肢配筋超限

墙梁配筋超限

地震内力起主要作用

地震内力起主要作用

如何调整剪力墙的刚度? 当结构布置造成刚度过大,地震作用太大时,减弱剪力墙的刚度是一个很有效的方法之一。 刚度下降,地震作用减少,则构件设计可以通过。 减少刚度的方法可以用开大洞、去掉一些内墙的方法。 刚度减小会不会位移不够? 刚度、地震力、位移是三个相互耦合的分析结果。但主要看刚度和地震力准跑的快,准就占主导地位。当刚度下降的过快,则位移就有可能不够。 结构分析的反复调整,就是对刚度、地震力、位移的不断调整,以达到一个理想的结果。

连梁应采用怎样的计算模型?对结构刚度有什么影响? 由墙开洞产生的连梁,对结构的整体刚度影响是很大的。不同的连梁刚度模型(壳元、杆元),计算结果会产生较大的差异。 即使采用同一种模型,如壳元,单元划分的不同,差异也会较大。 连梁刚度变化,对整体结构影响较大,它是整体结构的刚度调节器。 两端剪力墙中的连梁,起到传递水平剪力的作用,所以当两端剪力墙刚度很大(墙很长)时,墙吸收很大的地震力,则连梁往往抗剪超限。

连梁与墙的协调节点 框架梁与墙的协调节点 连梁壳单元划分 连梁杆单元模型 连梁不同的分析模型

连梁与墙的协调节点 框架梁与墙的协调节点 连梁的单元划分方式1 连梁的单元划分方式2 连梁不同的单元划分

超限连梁两端剪力墙较长

不同的剪力墙分析模型有什么区别? 目前常用的剪力墙分析模型,主要有壳元、薄壁杆元两种。 由于有多种(几十种)壳元模型,根据不同的协调条件,可以产生不同的壳元模型,只要单元划分一致,在弹性小变形下的计算结果基本一致。 复杂的剪力墙结构应采用壳元模型。 只有比较简单的,墙肢较短的、洞口上下对齐的剪力墙结构可以采用薄壁杆元模型。 对于有大量短肢剪力墙的结构,采用壳元模型时,单元划分应加细,否则容易产生较大的误差。

对于复杂高层结构也要使用两种不同的计算模型进行分析 广义协调位移函数曲线 SATWE上下墙节点要求协调 PMSAP上下墙可以采用附加位移函数作为约束条件的广义协调