第十章 Metabolism of lipids 脂类代谢
Course Content Digestion and absorption of lipids plasma lipoprotein metabolism Triacylglycerol metabolism Phospholipid metabolism Cholesterol metabolism
目的要求: 1、掌握血浆脂蛋白的分类、组成及功能, 甘油三酯的分解代谢及胆固醇的转化。 2、熟悉脂类的分类, 甘油三酯、胆固醇的合成。 3、了解磷脂代谢, 多不饱和脂肪酸的重要衍生物。脂类代谢紊乱与疾病关系
第一节 脂类的分布和生理功能 一、脂类分布 甘油三酯(三酰甘油、脂肪):真脂、储存脂、可变脂 皮下、腹腔大网膜、肠系膜、内脏周围——脂库 类脂: 基本脂、固定脂 生物膜、神经组织
二、脂类的生理功能 (一)三酰甘油的生理功能: 1、是一种能源物质,储能和氧化供能 2、提供必需脂肪酸essential fatty acids 3、溶解脂溶性维生素 (二)类脂功能: 1、是生物膜的组成成分cell membrane components 膜的流动性和坚固性与脂类有关 2、协助脂类及脂溶性维生素的吸收和运输 absorption and transportation of fat-soluble vitamins 3、胆固醇是合成vitaminD3、胆汁酸bile acid和各种类固醇激素steroid hormones等物质的原料
第二节 脂类的消化和吸收 一、脂类消化(digestion):酯键水解 消化部位:小肠(small intestine) 消化酶: 胰脂酶(steapsin , pancreatic lipase ) 胰磷脂酶(pancreatic phosphatidase) 胆固醇酯酶(cholesterase)等 消化产物:脂肪酸、单酰甘油(monoacylglycerol ) 溶血磷脂(lysophosphatide)、胆固醇 二、脂类吸收(absorption) 植物固醇不吸收、抑制胆固醇的吸收 胆汁酸促进脂类消化吸收
小肠上段是主要的消化场所 脂类(TG、Ch、PL等) 微团 甘油一脂、溶血磷脂、 长链脂肪酸、胆固醇等 混合微团 胆汁酸盐乳化 胰脂肪酶、辅脂酶等水解 甘油一脂、溶血磷脂、 长链脂肪酸、胆固醇等 混合微团 乳化
脂类的吸收 在十二指肠下段及空肠上段吸收 混合 微团 扩散 小肠粘膜 细胞内 重新酯化 乳糜微粒 载脂蛋白结合 门静脉 肝脏
Digestion of Triacylglycerols
第三节 血脂plasma lipids 一、血脂的组成与含量(blood fat,plasma lipids) (一)概念:血浆中所含的脂类。 (二)主要成分: ①三酰甘油(triacylglycerol) ②磷脂 (phospholipid ) ③胆固醇和胆固醇酯(cholesterol and cholesterol ester) ④游离脂肪酸(free fatty acid) (三)血脂含量:不稳定
(二)血脂的来源和去路 转变为其它物质 食物 体内合成 脂库动员 氧化供能 脂库储存 血脂 CM 脂肪酸-清蛋白 VLDL 构成生物膜
三、血浆脂蛋白(lipoprotein)(血脂的运输形式) 成分:脂类、蛋白质(载脂蛋白) (一)血浆脂蛋白的分类与命名 1、电泳(electrophoresis)分类法: α-脂蛋白、前β-脂蛋白pre β- 、β-脂蛋白、 乳糜微粒(chylomicron,CM) 2、超速离心(ultracentrifugation)分类法: CM、VLDL、LDL、HDL
(一)电泳法electrophoresis 按其移动的快慢,可将脂蛋白依次分为:α-脂蛋白、 前β-脂蛋白、β-脂蛋白,乳糜微粒chylomicron在原点不动 CM β 前β α + 血浆脂蛋白琼脂糖凝胶电泳图谱
(二)超速离心法 颗 粒 密 度 按密度大小依次为: 乳糜微粒(CM) 极低密度脂蛋白(VLDL) 低密度脂蛋白 (LDL) 高密度脂蛋白 (HDL) HDL又可分为HDL1、HDL2、HDL3等亚类。 尚有脂蛋白(a) [LP(a)]。游离脂肪酸(FFA)与清蛋白结合而运输.
3、电泳分类法与超速离心法的对应关系 电泳分类法 超速离心分类法 小 小 CM CM 迁移率 β VLDL 密度 前-β LDL HDL 电泳分类法 超速离心分类法 小 小 CM CM β VLDL 前-β LDL HDL 迁移率 密度 (二)、血浆脂蛋白的组成 蛋白质(载脂蛋白apolipoprotein, apoprotein ) 血浆脂蛋白 脂类(三酰甘油、胆固醇及其酯、磷脂) (三)、血浆脂蛋白的结构特点: 以非极性脂(如:三酰甘油)为核心,表面覆盖以单层极 性分子(如:磷脂、载脂蛋白及游离的胆固醇等)。
血浆脂蛋白的结构特点: 以非极性脂nonpolar lipids为核心,表面覆盖以单层极性分子polar molecule,组成球状颗粒。 外周载脂蛋白 Peripheral apoprotein 磷脂Phospholipid 三酰甘油Triacylglycerol 胆固醇酯Cholesterol ester 游离胆固醇 Free cholesterol 非极性脂类核心 Core of mainly nonpolar lipids 整合的载脂蛋白 Integral apoprotein
载脂蛋白(apolipoprotein,Apo): 血浆脂蛋白中的蛋白质部分。 Apo至少有18种,分为ApoA(A1、AⅡ)、(B100、B48)、C(C1、CⅡ、CⅢ )、D、E、F、J及Apo(a)。 功能: (1) 结合和转运脂类; (2) 调节酶活性; (3) 作为脂蛋白受体的配体。
合成部位及来源: 小肠粘膜细胞内合成。转运 外源性脂类. (四)血浆脂蛋白的代谢与功能 1、代谢 乳糜微粒(CM) 合成部位及来源: 小肠粘膜细胞内合成。转运 外源性脂类. 主要代谢变化: 新生CM从HDL获得ApoC、ApoE转变为成熟的CM, CⅡ激活肝外毛细血管内皮细胞表面的LPL,从而使CM中的TG反复水解(90%以上),表面过多的ApoA、ApoC及磷脂、Ch转移给HDL,并从HDL处接受CE(胆固醇酯)(CETP协助)。成为 富含ApoE 及CE的CM残粒。 CM残粒可被Apo E受体识别和摄取.
清除方式: 迅速被肝脏清除,一半通过LRP,另一半则通过ApoBE受体。 CM颗粒大能使光散射,密度小。饭后血清,4℃过夜形成奶油层。
Nascent CM Dietary TG B48 Extrahepatic tissues 淋巴 A TG Ch MatureCM 小肠 Small Intestine Lymphatics 脂蛋白脂酶 fatty acid Lipoprotein Lipase 肝外组织 Glycerol Extrahepatic tissues TG Ch C E A B48 MatureCM apo-E .apo-C P Ch A E C HDL P.Ch apo-A .apo-C Cholesterol Fatty acids LIVER TGCh apo-E B48 Rump CM apo-E Receptor
2)VLDL、IDL、LDL VLDL亦为较大颗粒,当血中水平升高时,血清外观呈乳浊, 但4℃过夜不形成奶油层。
Extrahepa-tic tissues TG Ch B100 Nascent VLDL Intestine TGCh apo-C apo-E apo-B100 Mature VLDL Lipoprotein Lipase Extrahepa-tic tissues Fatty acids Glycerol apo-C apo-E P Ch A E C HDL P.Ch .apo-C apo-B 、E Receptor Fatty acids Cholesterol B100 TGCh apo-E IDL Ch apo-B100 LDL Extrahepatic tissues
1、CM 含TG~90%,小肠黏膜细胞合成,新生CM 有apoA、B-48,在血液中从HDL处获得apoC、apoE成为成熟CM,在肝降解。半衰期5-15min. 组成和代谢特点: 2、VLDL、IDL、LDL VLDL含TG ~60%,肝合成,新生VLDL 有apoB100、apoE,在血液中从HDL获得apoC 、apoE成为成熟VLDL 。 TG水解、 apoC移至HDL后形成IDL,IDL的TG继续被组织LPL水解,apoE移至HDL,最后剩下胆固醇酯为主(~50%)和apoB100 即形成了LDL。LDL与肝或肝外中特异受体(apoB100受体, apoBE受体)结合,放出Ch 利用或被肝降解。 3 、HDL 含C ~20%,磷脂25%,蛋白质~50%。肝、小肠合成,有apoA 、apoC、apoE,血浆LCAT使新生HDL的胆固醇酯化,成为成熟HDL,在肝降解。
血浆脂蛋白的功能 血浆脂蛋白 合 成 功 能 C M代谢 小肠 转运外源性脂类(三酰甘油为主) 至全身 VLDL代谢 肝脏 合 成 功 能 C M代谢 小肠 转运外源性脂类(三酰甘油为主) 至全身 VLDL代谢 肝脏 运输内源性脂类(三酰甘油为主) 由肝至全身 LDL代谢 肝脏,血浆中VLDL 代谢而来 运输肝合成的内源性胆固醇 HDL代谢 肝脏、小肠 运输外周组织的胆固醇 至肝脏(胆固醇的逆转运)
第四节 甘油三酯的中间代谢intermediary metabolism 一、 甘油三酯的分解代谢 triacylglycerol catabolism (一)脂肪动员fat Mobilization 1、概念: 甘油 glycerol 脂肪酶 脂库三酰甘油 triacylglycerol 脂肪酸 fatty acid 2、关键酶key enzyme:三酰甘油脂肪酶 (激素敏感性脂肪酶 hormone-sensitive lipase) 脂解激素 抗脂解激素:胰岛素insulin
Mobilization of triacylglycerols in the adipose tissue, breaks down triacylglycerols to free fatty acids and glycerol (fatty acids are hydrolyzed initially from C1or C3 of the fat) hormone sensitive lipase cleave a fatty acid from a triglyceride, then other lipase complete the process of lipolysis, and fatty acid are released into the blood by serum albumin
脂肪组织贮存的甘油三酯的动员
CH2OOCR1 R2COOCH CH2OOCR3 CH2OH 脂肪酶 脂肪酶 CH2OH HOCH + RCOOH
(dihydroxy-acetone phosphate) (二)甘油的氧化 甘油 α-甘油磷酸 二羟丙酮磷酸 (dihydroxy-acetone phosphate) 糖代谢、 糖异生途径glyconeogenesis CH2OH HOCH CH2OH HOCH CH2OPO3H2 CH2OH O=C CH2OPO3H2 甘油激酶 Pi甘油脱氢酶
(三)脂肪酸的氧化(Oxidation) 氧化方式:β-氧化、α-氧化、ω-氧化等 概念——脂酰基(脂肪酸)在线粒体内的氧化分解是从脂酰基的β-碳原子开始,进行脱氢、加水、再脱氢、硫解产生乙酰CoA的反应过程。 β氧化过程: (1)脂肪酸的活化-脂酰CoA(acyl-CoA)的生成 活化部位:胞液 (2)脂酰CoA进入线粒体 ①载体:肉(毒)碱(carnitine) ②酶:肉(毒)碱脂酰转移酶(carnitine acyl transferase)
review Catabolism of TAG
Mobilization of triacylglycerols in the adipose tissue, breaks down triacylglycerols to free fatty acids and glycerol (fatty acids are hydrolyzed initially from C1or C3 of the fat) hormone sensitive lipase (HSL) cleaves a fatty acid from a triglyceride, then other lipases complete the process of lipolysis, and fatty acid are released into the blood by serum albumin清蛋白.
The glycerol is absorbed by the liver and converted to glycolytic intermediates - In this way, fats can be used as a source of material for glucose synthesis. - The reverse reaction is how glycerol is produced for the synthesis of fats.
Fatty acid bata oxidation
Overview of fatty acid degradation CAPILLARY LPL lipoproteins 2 FA FABP FA 3 MITOCHONDRION FABP acyl-CoA 4 acetyl-CoA TCA cycle -oxidation 6 7 A C S 1 albumin FA From adipose cell FA carnitine transporter acyl-CoA 5 CYTOPLASM FA = fatty acid LPL = lipoprotein lipase cell membrane FABP = fatty acid binding protein ACS = acyl CoA synthetase Overview of fatty acid degradation
1. Activation of Fatty Acids Acyl CoA synthetase reaction occurs on the mitochondrial membrane - These reactions occur near equilibrium. What drives the reaction is the subsequent hydrolysis of the pyrophosphate. • We saw this before with the activation of glucose for glycogen synthesis.
2.Transport into Mitochondrial Matrix Carnitine肉毒碱 carries long-chain activated fatty acids into the mitochondrial matrix.
3. Fatty acid Beta oxidation Each round in fatty acid degradation involves four reactions 1. oxidation to trans-∆2-Enoly-CoA Removes H atoms from the and carbons -Forms a trans C=C bond -Reduces FAD to FADH2 - The pathway is called the β-oxidation pathway. - Like succinyl dehydrogenase, this reaction uses FAD and is linked to Complex 2 of the electron transport chain.
2. Hydration to L–3–Hydroxylacyl CoA Adds water across the trans C=C bond Forms a hydroxyl group (—OH) on the carbon - The pathway is called the β-oxidation pathway. - The hydration produces only the L–isomer.
3. Oxidation to 3–Ketoacyl CoA Oxidizes the hydroxyl group Forms a keto group on the carbon - The pathway is called the β-oxidation pathway.
4. Thiolysis to produce Acetyl–CoA acetyl CoA is cleaved:By splitting the bond between the and carbons. To form a shortened fatty acyl CoA that repeats steps 1 - 4 of -oxidation
-Oxidation of Fatty Acid : Acyl CoA(Rn) Fatty acids(Rn) 、-enoyl CoA Acyl CoA dehydrogenase FAD FADH2 Carbon Backbone Reaction Sequence: Dehydrogenation Hydration Thiolysis (Carbon-Carbon Cleavage) -hydroxyacyl CoA Enoyl CoA hydratase H2O -ketoacyl CoA NAD NADH+H+ Hydroxyacyl CoA Dehydrogenase Acyl CoA(Rn-2) thiolase SH-CoA Acetyl CoA TCAC
The length of a fatty acid Cycles of -Oxidation The length of a fatty acid Determines the number of oxidations and the total number of acetyl CoA groups Carbons in Acetyl CoA -Oxidation Cycles Fatty Acid (C/2) (C/2 –1) 12 6 5 14 7 6 16 8 7 18 9 8
-Oxidation and ATP Activation of a fatty acid requires: 2 ATP One cycle of oxidation of a fatty acid produces: 1 NADH 3 ATP 1 FADH2 2 ATP Acetyl CoA entering the citric acid cycle produces: 1 Acetyl CoA 12 ATP
ATP for Myristic Acid肉豆蔻酸 C14 ATP production for Myristic(14 carbons): Activation of myristic acid -2 ATP 7 Acetyl CoA 7 acetyl CoA x 12 ATP/acetyl CoA 84 ATP 6 Oxidation cycles 6 NADH x 3ATP/NADH 18 ATP 6 FADH2 x 2ATP/FADH2 12 ATP Total 102 ATP
Oxidation of Special Cases (monounsaturated fatty acids)
D-Methylmalonyl甲基丙二酰 Odd Carbon Fatty Acids 5 Cycles 5 CH3COSCoA + CH3CH2COSCoA Propionyl CoA Carboxylase羧化酶 ATP/CO2 Propionyl丙酰CoA TCA Cycle Mutase Vit. B12 Epimerase Succinyl CoA L-Methylmalonyl CoA D-Methylmalonyl甲基丙二酰 CoA
Ketogenesis酮体生成: the formation of Ketone Bodies ***** Thiolase 2 CH3COSCoA CH3COCH2COSCoA CH3COSCoA Acetoacetyl CoA 乙酰乙酰辅酶A HMG CoA Synthase合酶 Several steps Cholesterol (in cytosol) OH HMG CoA HOOC-CH2-C-CH2COSCoA CH3 (in liver: mitochon- drial matrix) Ketogenesis -Hydroxy--methylglutaryl戊二酰 CoA (HMG CoA)
Ketogenesis: formation of Ketone Bodies OH HMG CoA lyase HO2C-CH2-C-CH2COSCoA CH3COCH2CO2H - CH3COSCoA CH3 Acetoacetic Acid乙酰乙酸 HMG CoA NADH + H+ - CO2 Dehydrogenase NAD+ OH CH3COCH3 CH3CHCH2CO2H Acetone (volatile挥发性的) -Hydroxybutyrate 羟基丁酸 Ketone bodies are important sources of energy, especially in starvation
Oxidation of ketone bodies in brain, muscle, kidney, and intestine Succinyl CoA synthetase = loss of GTP Acetoacetate -Hydroxybutyrate dehydrogenase NAD+ NADH Acetoacetyl CoA Succinyl CoA Succinate CoA transferase Citric Acid Cycle 2 Acetyl CoA CoA Thiolase
The significance of ketogenesis and ketogenolysis Ketone bodies are water soluble, they are convenient to transport in blood, and readily taken up by non-hepatic tissues. In the early stages of fasting, the use of ketone bodies by heart, skeletal muscle conserves glucose for support of central nervous system. With more prolonged starvation, brain can take up more ketone bodies to spare glucose consumption
High concentration of ketone bodies can induce ketonemia酮血症 and ketonuria酮尿, and even ketosis and acidosis酸中毒 When carbohydrate碳水化合物 catabolism is blocked by a disease of diabetes mellitus糖尿病 or defect of sugar source, the blood concentration of ketone bodies may increase, the patient may suffer from ketosis酮症 and acidosis
Overview Catabolism of TAG glycerol Ketone bodies TCAC
Lipogenesis脂肪生成: Fatty Acid Biosynthesis Fatty acid are synthesized and degraded by different pathways. from acetyl CoA ---原料 in the cytosol( 肝、肾、脑、肺、乳腺、脂肪等 组织的胞液) intermediates are attached to the acyl carrier protein (ACP) the activated donor is malonyl丙二酰–ACP Uses NADPH + H+ as reductant stops at C16 (palmitic acid 软脂酸)
合成过程: ① 乙酰CoA从线粒体向胞液的转运:苹果酸—柠檬酸穿梭系统(Malate-Citrate suttle) /柠檬酸穿梭系统(Citrate suttle) ② 丙二酸单酰CoA(Malonyl-CoA)的形成 ③ 软脂酸的合成过程
Citrate Shuttle Acetyl–CoA is synthesized in the mitochondrial matrix, whereas fatty acids are synthesized in the cytosol Acetyl–CoA units are shuttled out of the mitochondrial matrix as citrate: - The inner mitochondrial membrane is impermeable to Acetyl-CoA - The citrate lyase reaction requires an equivalent of ATP. - The shuttle allows Acetyl-CoA to be shuttled to the cytosol, where fatty acid synthesis can occur. - The shuttle consumes one equivalent of ATP. - The shuttle also substitutes an NADPH for an NADH, which is also needed for synthesis.
Formation of Malonyl Coenzyme A Formation of malonyl–CoA is the committed step关键步骤 in fatty acid synthesis O || CH3—C—S—CoA + HCO3- + ATP Acetyl CoA 乙酰CoA羧化酶 Acetyl CoA carboxylase O O || || -O—C—CH2—C—S—ACP + ADP + Pi Malonyl (丙二酰) CoA - This reaction is analogous to the pyruvate carboxylase reaction that we saw in gluconeogenesis. • The coenzyme biotin used to activate the carbon dioxide.
脂肪酸合成酶系:脂酰基载体蛋白(ACP) 6种酶活性的多功能酶: 高等动物中: 脂肪酸合成酶系:脂酰基载体蛋白(ACP) 6种酶活性的多功能酶: 6种酶活性都在一条多肽链上,有三个结构域,属多功能酶,由一个基因编码;有活性的酶为两个相同亚基首尾相连组成的二聚体。辅基为4`磷酸泛酰氨基乙硫醇。
β-酮脂酰合成酶 乙酰基转移酶 丙二酰基转移酶 β-烯脂酰还原酶 β-酮脂酰还原酶 β-羟酰脱水酶 硫酯酶
具体过程
Condensation缩合 and Reduction In reactions 1 and 2 of fatty acid synthesis: Condensation by a synthase combines acetyl-ACP with malonyl-ACP to form acetoacetyl-ACP (4C) and CO2 (reaction 1) Reduction converts a ketone to an alcohol by using NADPH (reaction 2)
Dehydration and Reduction In reactions 3 and 4 of fatty acid synthesis: Dehydration forms a trans double bond (reaction 3) Reduction converts the double bond to a single bond by using NADPH (Reaction 4)
Lipogenesis Cycle Repeats Fatty acid synthesis continues: Malonyl-ACP combines with the four-carbon butyryl-ACP to form a six-carbon-ACP. The carbon chain lengthens by two carbons each cycle
Lipogenesis Cycle Completed Fatty acid synthesis is completed when palmitoyl棕榈酰 ACP reacts with water to give palmitate (C16) and free ACP.
Summary of Lipogenesis
palmitic acid biosynthesis 7 Acetyl-CoA 7 Acetyl-CoA Malonyl-CoA Acetyl-CoA carboxylase CO2 7 Acetyl -CoA Fatty acid synthase complex Palmitic acid(16C) microsome mitochondria
Elongation and Unsaturation Endoplasmic reticulum(内质网) systems introduce double bonds into long chain acyl–CoA's Reaction combines both NADH and the acyl–CoA's to reduce O2 to H2O convert palmitoyl–CoA to other fatty acids Reactions occur on the cytosolic face of the endoplasmic reticulum. Malonyl–CoA is the donor in elongation reactions
Oxidation and Fatty Acid Synthesis
Fatty Acid Formation Shorter fatty acids undergo fewer cycles Longer fatty acids are produced from palmitate by using special enzymes Unsaturated不饱和的 cis顺式 bonds are incorporated into a 10-carbon fatty acid that is then elongated further When blood glucose is high, insulin胰岛素 stimulates glycolysis and pyruvate oxidation to obtain acetyl CoA to form fatty acids.
Stoichiometry化学计量学of FA synthesis The stoichiometry of palmitate synthesis: Synthesis of palmitate from Malonyl–CoA Synthesis of Malonyl–CoA from Acetyl–CoA Overall synthesis
Sources of NADPH The malate dehydrogenase and NADP+–linked malate enzyme reactions of the citrate shuttle exchange NADH for NADPH - Most of the NADPH for the the synthesis of palmitoyl-CoA still comes from the phosphate pentose pathway.
Regulation of Fatty Acid Synthesis Regulation of Acetyl carboxylase(乙酰羧化酶) Global (+) insulin (-) glucagon (-) epinephrine Local (+)Citrate (-) Palmitoyl–CoA (-) AMP - The AMP activated kinase is activated by AMP and inhibited by ATP - Glucagon and epinephrine activate protein kinase A, which inhibits the phosphatase by phosphorylating it - Insulin causes dephosporylation of Acetyl-CoA carboxylase by activating a phosphatase (do not know which one)
(二)三酰甘油的合成triacylglycerol synthesis (P150) 3-P-甘油 2脂酰CoA 磷脂酸 脂酰CoA 甘油三酯
激素对三酰甘油代谢的调节 (一)促进三酰甘油合成的主要激素: 胰岛素(Insulin) (二)促进三酰甘油分解的激素: 肾上腺素(adrenalin,epinephrine)、 胰高血糖素(glycagon ) 糖皮质激素(glucocorticoid )、 生长素(somatotropin)、甲状腺素(thyroxin )。
一、甘油磷脂glycerophospholipid的代谢 (一)分解代谢(catabolism) 第五节 类脂的代谢 一、甘油磷脂glycerophospholipid的代谢 (一)分解代谢(catabolism) 1、主要的磷脂酶(phospholipase): 磷脂酶A1、A2、C、D. 2、最终水解产物:甘油、脂肪酸、磷酸、含氮碱 CH2 O C R1 CH2 O P O X R2 C O CH O OH 磷脂酶D 磷脂酶A1 磷脂酶A2 磷脂酶C 事实上,磷脂的分解代谢不一定进行到底,中间产物可再酯化又形成新的磷脂分子.
(二)合成代谢(anabolism) 1、原料:脂肪酸、甘油、磷酸、X(胆碱choline 、乙醇胺ethanolamide、丝氨酸serine) 2、合成途径(biosynthesis pathway):甘油二酯合成途径 CDP-甘油二酯合成途径 二、神经鞘磷脂(sphingomyelin)的代谢 (一)神经鞘磷脂的合成:丝氨酸、软脂酸、胆碱、CTP (二)神经鞘磷脂的分解 软脂酰CoA 软脂酰CoA 鞘氨醇 神经鞘磷脂 丝氨酸 CDP- 胆碱
三、胆固醇的代谢(Metabolism of Cholesterol) (一)胆固醇的合成(Cholesterol Synthesis) 1、 合成部位:肝细胞(主要) 2、 合成原料:乙酰CoA 、ATP、NADPH 3、关键酶:HMG-CoA还原酶 (HMG-CoA Reductase) OH
4、合成过程 ① 甲基二羟戊酸(Mevalonate, MVA)的生成 ② 鲨烯(Squalene)的合成 ③ 胆固醇(Cholesterol)的生成 乙酰乙酰CoA 乙酰乙酸 β—羟丁酸 丙酮 乙酰CoA HMG-CoA MVA 胆固醇
Acyl CoA:cholesterol acyltransferase (二)胆固醇的酯化:两种酯化方式 1、在组织细胞中 胆固醇+脂酰CoA 胆固醇酯(Cholesterol ester) 脂酰基转移酶 Acyl CoA:cholesterol acyltransferase (ACAT) 2、在血浆中 胆固醇 + 磷脂酰胆碱 胆固醇酯 (LCAT) 磷脂酰胆碱-胆固醇 脂酰基转移酶
(三)胆固醇的转化(transformation) 1、转变成胆汁酸 (bile acids)(肝脏) 2、转变成7-脱氢胆固醇(7-dehydrocholesterol)(肝脏及肠粘膜细胞 intestine mucous membrane )→VitD3(皮下 subcutaneous tissue) 3、转变成类固醇激素(steroid hormones),如:肾上腺皮质素( Corticosteroids )、性激素(sex hormones) (四)胆固醇的排泄(excretion)
胆固醇合成的调节 限速酶:HMG CoA还原酶 (1)饥饿与饱食的调节 (2)胆固醇的调节 胆固醇可反馈抑制肝内HMG-CoA还原酶的合成.但小肠黏膜细胞的HMG-CoA还原酶活性不受抑制. (3)激素的调节 胰岛素能诱导肝细胞HMG-CoA还原酶的合成 胰高血糖素,皮质醇能抑制HMG-CoA还原酶的活性 甲状腺素能诱导肝细胞HMG-CoA还原酶的合成,还能促进胆固醇的转化.
(五)胆固醇的生理功能: 1、 构成细胞膜; 2、 是合成胆汁酸、VitD3、类固醇激素等生理活性物质的前体(precursor)。 胆固醇酯 食物 胆汁酸 7-脱氢胆固醇 Vit.D3 体内合成 类固醇激素 排泄 胆固醇 胆固醇的来源(sources)与去路(outlets)
第六节 脂类代谢紊乱 一、 高脂血症(hyperlipoidemia)/高脂蛋白血症(hyperlipoproteinemia) 三酰甘油或胆固醇持续过高引起的。 二、动脉粥样硬化(atherosclerosis) 1、 胆固醇过高引起的; 2、 血脂与动脉粥样硬化的关系: ① LDL有致动脉粥样硬化作用 ② HDL有抗动脉粥样硬化作用 三、肥胖 1、 脂肪过高引起的; 2、原因:遗传、内分泌失调、摄入热量过多
高胆固醇血症 血浆胆固醇水平高于正常范围时称为高胆固醇血症(hypercholesterolemia). 高胆固醇血症是冠心病的重要危险因子之一. 降低血浆胆固醇的方法: (1)限制摄入量 (2)减少机体自身合成--- HMG-CoA还原酶的竞争性抑制剂 (3)促进其转化与排泄 (4)摄取富于多不饱和脂肪酸的食物
脂 类 代 谢 概 况 血脂 甘油 糖代谢途径、糖异生途径 三酰甘油 胆固醇 磷脂 脂肪酸 乙酰CoA 酮体 H2O+CO2+ ATP 食物 体内合成 脂肪动员 血脂 胆固醇酯 胆汁酸 7—脱氢胆固醇 类固醇激素 排泄 构成生物膜 甘油、脂肪酸、磷酸、含氮碱 脂 类 代 谢 概 况
磷脂的分解 - O –含氮碱 磷脂酶A1、B O - C = O OH – C H H2C – - R1 C - O R2 - O - P 磷脂酶D 磷脂酶A2、B 磷脂酶C
磷脂的合成途径 磷脂酰胆碱 SAM 二酰甘油 磷脂酰乙醇胺 甘油磷酸 磷脂酸 磷脂酰丝氨酸 CTP PPi CDP二酰甘油 磷脂酰肌醇 CMP CDP乙醇胺 SAM 二酰甘油 CO2 甘油磷酸 磷脂酸 CDP二酰甘油 CTP PPi 磷脂酰丝氨酸 磷脂酰肌醇 心磷脂