7.1 光速的测定 光的相速度和群速度 1 实验室方法 世界上最早用实验方法测定光速的是伽利略。他在1607年做了一个实验。当时,他叫甲乙两个人在夜间各带一只灯,分立在两个山顶上,甲先迅速取去灯罩对乙发出信号,乙在看到信号后,立即取去灯罩,对甲发出信号。两山的距离和光往返的时间来计算光速。由于当时的技术条件限制,测得的光速很不精确。  

Slides:



Advertisements
Similar presentations
探究问题 1 、观察任意一 质点,在做什么运动? 动画课堂 各个质点在各自的平衡 位置附近做机械振动,没 有随波迁移。 结论 1 :
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
信号与系统 第三章 傅里叶变换 东北大学 2017/2/27.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
新概念物理教程 光学.
课件 音频.
一 杨氏双缝干涉实验 实 验 装 置 p 波程差.
实验十六 光速测定 电科091 刘鹏亮.
《高等数学》(理学) 常数项级数的概念 袁安锋
电磁场与电磁波实验简介 天津大学电子信息工程学院通信系 Jin Jie.
第一十九章 第1节 最快的“信使”.
信息科学与工程学院 05光信息 周晓光 张闻钊 赵永杰 赵庆
实验十三 双棱镜干涉 南京农业大学物理实验中心.
第六章 经典光学 §1.光学的历史概述 §2.光的波动说和微粒说的论争 §3.光速的测定 §4.光谱的研究(略)
不确定度的传递与合成 间接测量结果不确定度的评估
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
2-7、函数的微分 教学要求 教学要点.
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
C++中的声音处理 在传统Turbo C环境中,如果想用C语言控制电脑发声,可以用Sound函数。在VC6.6环境中如果想控制电脑发声则采用Beep函数。原型为: Beep(频率,持续时间) , 单位毫秒 暂停程序执行使用Sleep函数 Sleep(持续时间), 单位毫秒 引用这两个函数时,必须包含头文件
Presenter: 宫曦雯 Partner: 彭佳君 Instructor:姚老师
光学谐振腔的损耗.
全国高校数学微课程教学设计竞赛 知识点名称: 导数的定义.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 函数 函数 — 研究对象—第一章 分析基础 极限 — 研究方法—第二章 连续 — 研究桥梁—第二章.
实验六 积分器、微分器.
应用实例 识别Ps & Pt ADTS 压力通道并校验 CPD8000 New MENSOR‘s ADTS: CPA8001.
§7.4 波的产生 1.机械波(Mechanical wave): 机械振动在介质中传播过程叫机械波。1 2 举例:水波;声波.
第8章 静电场 图为1930年E.O.劳伦斯制成的世界上第一台回旋加速器.
第三章 辐射 学习单元2 太阳辐射.
看一看,想一想.
第一章 函数与极限.
从物理角度浅谈 集成电路 中的几个最小尺寸 赖凯 电子科学与技术系 本科2001级.
数列.
第一章 导数及其应用 函数的平均变化率 瞬时速度与导数.
第0章 预备知识 0.1两种基本的研究方法 0.2 矢量分析概述 0.3 麦克斯韦方程组 0.4 电磁波的波动现象和简谐时的波动方程
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
一、驻波的产生 1、现象.
§2 光的衍射(diffraction of light)
Home Work 现代科学中的化学键能及其广泛应用 罗渝然(Yu-Ran Luo)
用计算器开方.
分词(二).
1.2 有理数 第1课时 有理数 伏家营中学 付宝华.
成绩是怎么算出来的? 16级第一学期半期考试成绩 班级 姓名 语文 数学 英语 政治 历史 地理 物理 化学 生物 总分 1 张三1 115
激光器的速率方程.
第15章 量子力学(quantum mechanics) 初步
iSIGHT 基本培训 使用 Excel的栅栏问题
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
一 测定气体分子速率分布的实验 实验装置 金属蒸汽 显示屏 狭缝 接抽气泵.
第十三章 光.
例题2-15讲解 主讲人 束美其.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
汤姆大叔漫画.
第十五章 一、电磁波 1.
滤波减速器的体积优化 仵凡 Advanced Design Group.
§17.4 实物粒子的波粒二象性 一. 德布罗意假设(1924年) 波长 + ? 假设: 实物粒子具有 波粒二象性。 频率
LCS之自由电子激光方案 吴钢
基于列存储的RDF数据管理 朱敏
第19章 电磁波与信息时代.
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
电视信号的传播依靠电磁波 移动电话依靠电磁波传递信息   电磁波是怎样产生的?   电磁波是怎样传播的?   波长、波速、频率有何关系?
FH实验中电子能量分布的测定 乐永康,陈亮 2008年10月7日.
本底对汞原子第一激发能测量的影响 钱振宇
插入排序的正确性证明 以及各种改进方法.
位似.
第三章 图形的平移与旋转.
Presentation transcript:

7.1 光速的测定 光的相速度和群速度 1 实验室方法 世界上最早用实验方法测定光速的是伽利略。他在1607年做了一个实验。当时,他叫甲乙两个人在夜间各带一只灯,分立在两个山顶上,甲先迅速取去灯罩对乙发出信号,乙在看到信号后,立即取去灯罩,对甲发出信号。两山的距离和光往返的时间来计算光速。由于当时的技术条件限制,测得的光速很不精确。   伽利略(Galileo Galilei,1564-1642),意大利物理学家、天文学家和哲学家,近代实验科学的先驱者。

后来,法国物理学家斐索于1849年用一只旋转的齿轮测量光走过某一给定距离的时间,齿轮以一定的速度运动并让光通过齿间。斐索测得的光速为313000公里/秒。斐索先后研究了光的干涉、热膨胀等,发明了干涉仪。他在研究和测量光速问题上作出了贡献,是第一个不用天文常数、不借助天文观察来测量光速的人。他是采用旋转齿轮的方法来测定光速的。测出的光速为 342539.21千米/秒,这个数值与当时天文学家公认的光速值相差甚小。 斐索(1819-1896)法国物理学家

在光速测定的研究中,他是采用旋转平面镜的方法来测量光速的。其测得的光速为29.8×107米/秒,并分析实验误差不可能超过5×105米/秒。 后来,法国科学家傅科用一只旋转的镜子测定光速。他让镜子以一定的速度转动,使它在光线发出并从一面静止镜子反射回来这段时间内,恰好旋转一周。傅科在物理学史上以其“傅科摆”的实验著名于世。 在光速测定的研究中,他是采用旋转平面镜的方法来测量光速的。其测得的光速为29.8×107米/秒,并分析实验误差不可能超过5×105米/秒。 傅科(Jean Bernard Leon Foucault 1819~1868)法国实验物理学家

迈克耳逊继承了傅科的实验思想,用旋转八面棱镜法测得光速为299796千米/秒。 1834年,英国物理学家惠斯通利用旋转镜来测定电火花持续的时间,也想用此法来测定光速,同时也想确认一下在拆折射率更大的介质中,光速是否更大。惠斯通的思想方法是正确的,但是他没有完成。 迈克耳逊继承了傅科的实验思想,用旋转八面棱镜法测得光速为299796千米/秒。 惠斯通(CharlesWheatstone 1802~1875)英国物理学家、发明家 迈克耳孙,阿尔伯特·亚伯拉罕(A.Michelson1852—1931),德国出生的美国物理学家

随着科学科技的不断发展,人们不断地改进实验装置和技术,直到1932年用旋转棱镜测得光速为299774±2公里/秒。20世纪60年代,激光器的出现,使光速的测定越发精确,1972年测定的光速值为299792公里/秒。目前国际计量委员会承认的光速是299792458米±1.2米/秒。   从伽利略开始,中间经过斐索和傅科等人,一直到20世纪80年代,用来测定光速的实验都是一种定量实验。

2 光速的测量与长度单位“米”的定义 真空中光速c不仅是重要的光学常数,也是整个物理学以及天文学中几个最基本的普适常数之一,对其数值的精确测定,无疑具有十分重大意义的。 另一个天文学方法是1728年布喇德雷用的光行差法。在地面上进行光束测定的工作直到十九世纪上半叶才开始,特别值得提起的有斐索的齿轮法,傅科的旋转镜法和迈克耳孙的旋转棱镜法。 鉴于光速这一基本常数的重要性,对它的测量工作几十年来从未中断,在此期间方法不断改进,精确度不断提高。

自从1958年绅鲁姆利用微波干涉仪法得到当时公认的光速值c=299792. 5±0 自从1958年绅鲁姆利用微波干涉仪法得到当时公认的光速值c=299792.5±0.1km/s以来,所有的光速精密测量均以公式c=λν为基础,即电磁波在真空中的传播速度等于其频率与相应真空波长之乘积。当时的不确定度是3×10的7次方,其主要原因是使用的波长较长(4mm),因此波长测量的准确度较低,衍射效应带来的误差也较大。 用双缝干涉测光的波长

激光器的出现把光速的测量推向一个新阶段。特别是饱和吸收技术的采用,使我们可以得到频率的稳定性和复现性均十分优良的激光辐射,并且由于波长可以比原来微波干涉仪法中用的小三个量级(微米量级),使波长测量的准确度大为提高,甲烷稳定的3.39μm 氦氖光系统(He-Ne:CH4)和碘稳定的633nm氦氖辐射波长的复现性高百倍以上,比现行的“米”定义86Kr辐射波长的复现性高百倍以上,因此这不仅是光速的测量问题了,重新改变“米”的定义问题提上议事日程。

米定义咨询委员会保证,不管光速的推荐值于1975年在第十五届国际计量大会上得到正式通过。从此就有可能利用激光辐射或光速重新定义长度的单位“米”。 1975年第十五届国际计量大会和1979年第十六届国际计量大会慎重地讨论了重量重新定义米的问题。 考虑到今后计量学的发展趋势是将物理量的基准建立在基本物理常数的基础上,米定义咨询委员会通过了一项建议,要求国际计量委员会考虑一个新的米定义,于1983年提交第十七届国际计量大会讨论, 这个定义是: “米是平面电磁波在(1/299792458)秒的持续时间内在真空中传播行程的长度”。

3 光的相速度和群速度 根据光的微粒说,光在两种媒质界面上折射时,傅科做实验测定空气和水中光速之比近于4:3,此数值与空气到水的折射率相符,从而判定光的波动说的正确性。 虽然在傅科实验完成之前,光的波动说已为大量事实(如干涉、衍射、偏振等)所证明,但傅科的实验仍被认为是对惠斯原理最直接和最有力的支持,然而随着测定光速方法的改进,问题又复杂化了. 1885年迈克耳逊以较高的精度重复了傅科实验的同时,还测定了空气和CS2光速之比为1.758,但是用折射法测定的CS2折射率为1.64,两数相差甚大,绝非实验误差所致,这矛盾直到瑞利提出“群速”的概念之后才解决。 

一列有限长的波相当于许多单色波列的迭加,通常把由这样一群单色波组成的波列叫做波包。 当波包通过有色散的媒质时,它的各个单色分量将以不同的相速前进,整个波包在向前传播的同时,形状亦随之改变,我们把波包中振辐最大的地方叫做它的中心,波包中心前进的速度叫做群速,记作υg。  

为简单起见,我们考虑由两列波组成“波包”。设两列波分别为 即两波的频率(或波长)很接近,它们合成的波列为

此波的瞬时图像如下图所示,是振辐受到低频调制高频波列,这调制波列有一系列的最大值,因而它还算不得是一个典型的波包。要得到一个真正的波包,需有更多频率和波长相近的波迭回在一起 。