1.1.1-1.1.2命题与四种命题 高二数学 选修2-1 第一章 常用逻辑用语
你能分析此故事中歌德与批评家的言行语句吗? 歌德是18世纪德国的一位著名文艺大师,一天,他与一位批评家“狭路相逢”,这位文艺批评家生性古怪,遇到歌德走来,不仅没有相让,反而卖弄聪明,一边高地往前走。一边大声说道:“我从来不给傻子让路!”而对如此的尴尬的局面,但只是歌德笑容可掏,谦恭的闪在一旁,一边有礼貌回答道“呵呵,我可恰恰相反,”结果故作聪明的批评家,反倒自讨没趣。 你能分析此故事中歌德与批评家的言行语句吗?
常用逻辑用语 第一章 “数学是思维的科学” 逻辑是研究思维形式和规律的科学. 逻辑用语是我们必不可少的工具. 通过学习和使用常用逻辑用语,掌握常用逻辑用语的用法, 纠正出现的逻辑错误,体会运用常用逻辑用语表述数学内容的准确性、简捷性.
命题及其关系 1.1.1 命题
思考 下列语句的表述形式有什么特点?你能判断 它们的真假吗? (1) 12>5; (2) 3是12的约数; (3) 0.5是整数; (4)对顶角相等; (5)3 能被2整除; (6)若x2=1,则x=1. 语句都是陈述句, 并且可以判断真假。
命题的概念 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。 判断为真的语句叫做真命题。 判断为假的语句叫做假命题。 (1) 12>5; (2) 3是12的约数; (3) 0.5是整数; (4)对顶角相等; (5)3 能被2整除; (6)若x2=1,则x=1. 用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。 判断为真的语句叫做真命题。 判断为假的语句叫做假命题。
用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。如何判断一个语句是不是命题? 7是23的约数吗? X>5. -2<a<3. 画线段AB=CD. 疑问句 开语句 祈使句 判断一个语句是不是命题,关键看这语句是否符合“是陈述句”和“可以判断真假” 这两个条件。 有些语句中含有变量,在不给定变量的值之前,我们无法确定这语句的真假,这样的语句叫开语句,以后会专门研究。
看看下列语句是不是命题? 今天天气如何? 你是不是作业没交? 这里景色多美啊! -2不是整数。 4>3。 x>4。 不是(疑问句) 不是(感叹句) 是(否定陈述句) 是(肯定陈述句) 不是(开语句)
例1 判断下面的语句是否为命题?若是命题,指出它的真假。 (1) 空集是任何集合的子集. (是,真) (2)若整数a是素数,则a是奇数. (是,假) (3)指数函数是增函数吗? (不是命题) (4)若平面上两条直线不相交, 则这两条直线平行. (是,真) (5) (是,假) (6)x>15. (不是命题)
练习 判断下列语句是否是命题 . 注意:反意疑问句也是陈述句,能判断真假就是命题。 (1)求证 是无理数。 (2) (3)你是高二学生吗? 练习 判断下列语句是否是命题 . (1)求证 是无理数。 (2) (3)你是高二学生吗? (4)并非所有的人都喜欢苹果。 (5)一个正整数不是质数就是合数。 (6)若 ,则 (7)x+3>0. (8)难道矩形不是平行四边形吗? 注意:反意疑问句也是陈述句,能判断真假就是命题。 (1)(3)(7)不是命题,(2)(4)(5)(6)(8)是命题。
“若p,则q”形式的命题 p q 通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论。 命题“若整数a是素数,则a是奇数。”具有“若p,则q”的形式。 p q 通常,我们把这种形式的命题中的p叫做命题的条件,q叫做命题的结论。 “若p,则q”形式的命题是命题的一种形式而不是唯一的形式,也可写成“如果p,那么q” 、“只要p,就有q”等形式。
“若p,则q”形式的命题的书写 了解命题表示的判断,明确与判断有关的条件与结论。 对于一些条件与结论不明显的命题,一般采取先添补一些命题中省略的词句, 确定条件与结论。 如命题:“垂直于同一条直线的两个平面平行”。 写成“若p,则q”的形式为: 若两个平面垂直于同一条直线,则这两个平面平行。
例2 指出下列命题中的条件p和结论q: 若整数a能被2整除,则a是偶数; 菱形的对角线互相垂直且平分。 解:1) 条件p:整数a能被2整除, 则它的对角线互相垂直且平分。 条件p:四边形是菱形, 结论q:四边形的对角线互相垂直且平分。
例3 把下列命题改写成“若p则q”的形式,并判定真假。 (1) 负数的平方是正数. (2) 偶函数的图像关于y轴对称. (3)垂直于同一条直线的两条直线平行 (4) 面积相等的两个三角形全等. (5) 对顶角相等. 真命题 假命题
命题及其关系 1.1.2 四种命题
下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系? 若f(x)是正弦函数,则f(x)是周期函数; 若f(x)是周期函数,则f(x)是正弦函数; 若f(x)不是正弦函数,则f(x)不是周期函数; 若f(x)不是周期函数,则f(x)不是正弦函数。
观察命题(1)与命题(2)的条件和结论之间分别有什么关系? 若f(x)是正弦函数,则f(x)是周期函数; 若f(x)是周期函数,则f(x)是正弦函数; p q q p 互逆命题:一个命题的条件和结论分别是另一个命题的结论和条件,这两个命题叫做互逆命题。 原 命 题:其中一个命题叫做原命题。 逆 命 题:另一个命题叫做原命题的逆命题。 即 原命题:若p,则q 逆命题:若q,则p 例如,命题“同位角相等,两直线平行”的逆命题是“两直线平行,同位角相等”。
观察命题(1)与命题(3)的条件和结论之间分别有什么关系? 若f(x)是正弦函数,则f(x)是周期函数; 3. 若f(x)不是正弦函数,则f(x)不是周期函数. q p ┐p ┐q 为书写简便,常把条件p的否定和结论q的否定分别记作 “┐p” ,“┐q” 互否命题 原命题 (原命题的)否命题 原命题:若p,则q 否命题:若┐p,则┐q 例如,命题“同位角相等,两直线平行”的否命题是“同位角不相等,两直线不平行”。
否命题与命题的否定 否命题是用否定条件也否定结论的方式构成新命题。 命题的否定是逻辑联结词“非”作用于判断,只否定结论不否定条件。 对于原命题: 若 p , 则 q 有 否命题: 若┐p , 则┐q 。 命题的否定: 若 p ,则┐q 。
对于原命题: 若 p , 则 q 有 否命题: 若┐p , 则┐q 。 命题的否定: 若 p ,则┐q 。 例、写出下列命题的否定和否命题。 (1)面积相等的三角形是全等的三角形; (2)自然数的平方是正数; 解: (1)命题的否定:面积相等的三角形不是全等的三角形; 否命题:面积不相等的三角形不是全等的三角形 (2)命题的否定:自然数的平方不是正数; 否命题:某些自然数的平方是正数;
观察命题(1)与命题(4)的条件和结论之间分别有什么关系? 若f(x)是正弦函数,则f(x)是周期函数; 4. 若f(x)不是周期函数,则f(x)不是正弦函数. q p ┐q ┐p 互为逆否命题 原命题 (原命题的)逆否命题 原命题: 若p, 则q 逆否命题: 若┐q, 则┐p 例如,命题“同位角相等,两直线平行”的逆否命题是“两直线不平行,同位角不相等”。
三个概念 1、互逆命题:如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫互逆命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题。 2、互否命题:如果第一个命题的条件和结论是第二个命题的条件和结论的否定,那么这两个命题叫做互否命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。 3、互为逆否命题:如果第一个命题的条件和结论分别是第二个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题。
原命题,逆命题,否命题,逆否命题 四种命题形式: 原命题: 逆命题: 若 p, 则 q 否命题: 若 q, 则 p 逆否命题:
逆命题:当c >0 时,若ac >bc ,则a >b. 逆命题为真. 例 设原命题是“当c >0 时,若a >b ,则ac >bc ”,写出它的逆命题、否命题、逆否命题,并分别判断它们的真假: 解: 逆命题:当c >0 时,若ac >bc ,则a >b. 逆命题为真. 否命题:当c >0 时,若a ≤b ,则ac ≤ bc . 否命题为真. 逆否命题:当c >0 时,若ac ≤ bc ,则a ≤b . 逆否命题为真.
准确地作出反设(即否定结论)是非常重要的,下面是一些常见的结论的否定形式. 准确地作出反设(即否定结论)是非常重要的,下面是一些常见的结论的否定形式. 原结论 反设词 是 至少有一个 都是 至多有一个 大于 至少有n个 小于 至多有n个 对所有x,成立 对任何x, 不成立 一个也没有 不是 不都是 至少有两个 不大于 至多有(n-1)个 大于或等于 至少有(n+1)个 存在某x, 不成立 存在某x, 成立
练习:分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假。 (1)若q<1,则方程 有实根。 (2)若ab=0,则a=0或b=0.