31.4. 用列举法求简单事件的概率.

Slides:



Advertisements
Similar presentations
1 、谁能说说什么是因数? 在整数范围内( 0 除外),如果甲数 能被乙数整除,我们就说甲数是乙数的 倍数,乙数是甲数的因数。 如: 12÷4=3 4 就是 12 的因数 2 、回顾一下,我们认识的自然数可以分 成几类? 3 、其实自然数还有一种新的分类方法, 你知道吗?这就是我们今天这节课的学.
Advertisements

因数与倍数 2 、 5 的倍数的特征
摆一摆,想一想. 棋子个数数的个数 摆出的数 、 10 2 、 11 、 20 3 、 12 、 21 、 30 4 、 13 、 22 、 31 、 40 5 、 14 、 23 、 32 、 41 、
3 的倍数特征 抢三十
质数和合数 富县北教场小学 潘小娟 1 、什么叫因数? 2 、自然数分几类? 奇数和偶数. 3 、自然数还有一种新的分类方法, 就是按一个数的因数个数来分. 4 、写出 1—20 的因数。 前置性作业.

3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
因数与倍数 2 、 5 的倍数的特征 绿色圃中小学教育网 扶余市蔡家沟镇中心小学 雷可心.
2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
2 、 5 的倍数的特征 玉田百姓. 1 、在 2 、 3 、 5 、 8 、 10 、 12 、 25 、 40 这几个数中, 40 的因数有几个? 5 的倍数有几个? 复习: 2 、在 6 、 10 、 12 、 15 、 18 、 20 这几个数中,哪些数 是 2 的倍数?哪些数是 5 的倍数?
因数与倍数 2 、 5 、 3 的倍数的特 征 新人教版五年级数学下册 执教者:佛山市高明区明城镇明城小学 谭道芬.
冀教版四年级数学上册 本节课我们主要来学习 2 、 3 、 5 的倍数特征,同学们要注意观察 和总结规律,掌握 2 、 3 、 5 的倍 数分别有什么特点,并且能够按 要求找出符合条件的数。
2 , 5 的倍数的特征. 我们可以先写出几个 5 的 倍数来看看。 对,先研究小范围的数, 再进行推广验证。
重庆市九龙坡区走马小学 邓华. 一、复习导入,揭示课题 下面哪些数是 2 的倍数?哪些数是 5 的倍数? 2,5的倍数的特征:只看个位上数就能进行判断。 2的倍数:个位上是0,2,4,6,8的数。
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
2 、 5 的倍数特征 集合 2 的倍数(要求) 在百数表上依次将 2 的倍数找出 并用红色的彩笔涂上颜色。
北师大版七年级下册 第四章 概率 授课人:抚州市金溪一中 徐峰
概率的定义是什么? 一般的,在大量重复试验中,如果事件A发生的频率m/n会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability),记为P(A)=p 0≤P(A) ≤1. 必然事件的概率是1,不可能事件的概率是0.
欢迎同学们步入数学的殿堂,探究数学的奥妙!
用列举法求概率(1).
北师大版七年级数学下册 第四章 概率 第二节 摸到红球的概率.
初中数学 九年级(上册) 4.2 等可能条件下的概率(一)(2).
第十二章 认识概率(复习).
第十二章 认识概率(复习).
6.31等可能事件和概率 6.31等可能事件的概率 七年级备课组.
古典概型习题课.
计算可能性大小 清华园学校:张伟丽.
10.2 立方根.
25.2. 用列举法求概率(4) 太白中学 曹建.
25.2 用列举法求概率(3).
25.2 用列举法求概率(第3课时) 保靖民中:张 强.
25.2 用列举法求概率(第1课时) 曲沟镇第二初级中学:王艳利.
观察物体和可能性复习 城关镇中心小学 王浏璋.
12.1 等可能性 王林中学:娄艳秋.
事件的概率 画树形图求概率 育秀实验学校 李爱贤.
概率及其计算 本课内容 4.2 ——4.2.2 用列举法求概率.
五年级上册 统计与可能性例3.
第六章 概率初步.
初中数学 九年级(上册) 4.3 等可能条件下的概率(二).
摸球游戏: 盒子里装有黄球和白球,我和你们依次摸球,摸到球后放回去,摇一摇,继续摸。摸到黄球老师赢,摸到白球你们赢,赢者得福娃一个。
自主训练 1、盒子中有红、黄、蓝三种颜色的球各一个,只取一次,拿到红球的可能性是多少?黄球呢?蓝球呢?
求等可能性事件的概率----列举法,用列举法求概率的基本步骤.
9.1 抽签的方法合理吗 江苏沛县第五中学 张继厚.
第二十五章 概率初步 用列举法求概率(1).
初中数学 九年级(上册) 4.1 等可能性.
守株待兔——概率 七年级 数学 王玉英.
等可能条件下的概率(一) 有些事件的概率,如某批足球的质量情况、某种绿豆在相同条件下的发芽情况,是通过在大量重复进行的同一试验时,事件A发生的频率 会稳定地在某一个常数附近摆动, 这个常数就是事件A发生的概率. 通过大量的重复的实验,得到某个事件发生的频率,进而估计其发生的概率。这种方法费时、费力而且结果有一定的摆动性,有些实验还具有破坏性.
25.2. 用列举法求概率(1).
人教新课标版五年级上册 可能性.
人教新课标版五年级数学上册 可能性.
余角、补角.
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
第六章 概率初步 6.2 频率的稳定性.
2.1.2 空间中直线与直线 之间的位置关系.
线段的有关计算.
第四章 四边形性质探索 第五节 梯形(第二课时)
第六章 概率初步 3 等可能事件的概率(第3课时).
用计算器开方.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第4课时 绝对值.
2、5的倍数的特征 马郎小学 陈伟.
分数再认识三 真假带分数的练习课.
3.1无理数2.
2、5、3的倍数的特征.
用列举法求概率 (第二课时).
倒数的认识 执教者: 李东杰 2017年9月18日.
24.4弧长和扇形面积 圆锥的侧面积和全面积.
第二章 一元二次方程 2.4 用因式分解求解一元二次方程法(1).
找 因 数.
北师大版 五年级上册 第三单元 倍数与因数 拓展 问题 探究 练习.
Presentation transcript:

31.4. 用列举法求简单事件的概率

复习引入 事件A发生的频率m/n接近于某个常数,这时就把这个常数叫做事件A的概率,记作P(A). 2.概率的定义 0≤P(A) ≤1. 必然事件; 在一定条件下必然发生的事件, 不可能事件; 在一定条件下不可能发生的事件 随机事件; 在一定条件下可能发生也可能不发生的事件, 事件A发生的频率m/n接近于某个常数,这时就把这个常数叫做事件A的概率,记作P(A). 2.概率的定义 0≤P(A) ≤1. 必然事件的概率是1,不可能事件的概率是0.

等可能性事件 问题1.掷一枚硬币,落地后会出现几种结果? 问题2.抛掷一个骰子,它落地时向上的数有几种可能? 6种等可能的结果 。正反面向上2种可能性相等 问题2.抛掷一个骰子,它落地时向上的数有几种可能? 6种等可能的结果 问题3.从分别标有1.2.3.4.5.的5根纸签中随机抽取一根,抽出的签上的标号有几种可能? 5种等可能的结果。 等可能性事件

等可能性事件 等可能性事件的概率可以用列举法而求得。 等可能性事件的两个特征: 1.出现的结果有限多个; 2.各结果发生的可能性相等; 列举法就是把要数的对象一一列举出来分析求解的方法.

探究 问题1.掷一枚一硬币,正面向上的概率是多少? 问题2.抛掷一个骰子,求下列事件的概率 ① 点数为2的概率是多少? ②落地时向上的点数是3的倍数的概率是多少? ③点数为奇数的概率是多少? ④点数大于2且小于5的数的概率是多少?

例2.如图:是一个转盘,转盘分成7个相同的扇形,颜色分为红黄绿三种,指针固定,转动转盘后任其自由停止,某个扇形会停在指针所指的位置,(指针指向交线时当作指向右边的扇形)求下列事件的概率。(1)指向红色;(2) 指向红色或黄色;(3) 不指向红色。 解:一共有7种等可能的结果。 (1)指向红色有3种结果, P(红色)=_____ (2)指向红色或黄色一共有5种 等可能的结果,P( 红或黄)=_______ (3)不指向红色有4种等可能的结果 P( 不指红)= ________

解:A区有8格3个雷, 遇雷的概率为3/8, 如图:计算机扫雷游戏,在9×9个小方格中,随机埋藏着10个地雷,每个小方格只有1个地雷,,小王开始随机踩一个小方格,标号为3,在3的周围的正方形中有3个地雷,我们把他的区域记为A区,A区外记为B区,,下一步小王应该踩在A区还是B区? B区有9×9-9=72个小方格, 还有10-3=7个地雷, 由于3/8大于7/72, 所以第二步应踩B区 遇到地雷的概率为7/72,

1.随机掷一枚均匀的硬币两次,两次正面都朝上的概率是( ). A. B. C. D.1. 2.从甲地到乙地可坐飞机、火车、汽车,从乙地到丙地可坐飞机、火车、汽车、轮船,某人乘坐以上交通工具,从甲地经乙地到丙地的方法有( )种. A.4 B.7 C.12 D.81.

3.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只.则从中任意取1只,是二等品的概率等于( ). A. B. C. D.1. 4.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的一半的概率是(  ). A. B. C. D.

5.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。参加这个游戏的观众有三次翻牌的机会。某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是( ). A. B. C. D.

6. 有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有“20”,“08"和“北京”的字块,如果婴儿能够排成"2008北京”或者“北京2008".则他们就给婴儿奖励,假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是___________. 7、先后抛掷三枚均匀的硬币,至少出现一次正面的概率是(  )

8、有100张卡片(从1号到100号),从中任取1张,取到的卡号是7的倍数的概率为( )。 9、某组16名学生,其中男女生各一半,把全组学生分成人数相等的两个小组,则分得每小组里男、女人数相同的概率是( ) 10一个口袋内装有大小相等的1个白球和已编有不同号码的3个黑球,从中摸出2个球.   (1)共有多少种不同的结果?   (2)摸出2个黑球有多种不同的结果?   (3)摸出两个黑球的概率是多少?

11.一张圆桌旁有四个座位,A先坐在如图所示的座位上,B.C.D三人随机坐到其他三个座位上.则A与B不相邻而坐的概率为___; 12.你喜欢玩游戏吗?现请你玩一个转盘游戏.如图所示的两个转盘中指针落在每一个数字上的机会均等,现同时自由转动甲,乙两个转盘,转盘停止后,指针各指向一个数字,用所指的两个数字作乘积.所有可能得到的不同的积分别为______;数字之积为奇数的概率为______. 3 1 2 4 6

思考1: 这个游戏对小亮和小明公平吗?怎样才算公平 ? 你能求出小亮得分的概率吗? 小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃和黑桃的1,2,3,4,5,6,小明建议:”我从红桃中抽取一张牌,你从黑桃中取一张,当两张牌数字之积为奇数时,你得1分,为偶数我得1分,先得到10分的获胜”。如果你是小亮,你愿意接受这个游戏的规则吗? 这个游戏对小亮和小明公平吗?怎样才算公平 ? 你能求出小亮得分的概率吗?

随堂练习: 同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同 (2)两个骰子点数之和是9 (3)至少有一个骰子的点数为2 将题中的”同时掷两个骰子”改为 ”把一个骰子掷两次”,所得的结果 有变化吗?

练习:从2,3,4,5,6这5个数中任取两个数相乘,求: (1)积为偶数的概率 (2)积为奇数的概率 (3)积为偶数或奇数的概率

课堂小节 (一)等可能性事件的两个特征: 1.出现的结果有限多个; 2.各结果发生的可能性相等; (二)列举法求概率. 1.有时一一列举出的情况数目很大,此时需要考虑如何去排除不合理的情况,尽可能减少列举的问题可能解的数目. 2.利用列举法求概率的关键在于正确列举出试验结果的各种可能性,而列举的方法通常有直接分类列举、列表、画树形图等.