第9讲 圆锥曲线的热点问题.

Slides:



Advertisements
Similar presentations
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
Advertisements

专题25 椭圆、双曲线、抛物线.
§3.4 空间直线的方程.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
3.4 空间直线的方程.
4.1.2 圆的一般方程 南溪中学 周翔.
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
圆锥曲线复习.
练习 1。点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值 范围是 2.点P( )与圆x2+y2=1的位置关系是 ( )
1.2.2函数的表示法 圆的一般方程 (第一课时) 高二数学组 平度九中---张杰
直线与双曲线的位置关系.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
圆的方程复习.
18.2一元二次方程的解法 (公式法).
zhixian yu yuanzhuiquxian
圆复习.
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
1.直线过点(2,4)与抛物线y2=8x只有一个公共点,这样的直线共有(  )
1.设圆的圆心是C(a,b),半径为r,则圆的标准方程是(x-a)2+(y-b)2=r2
第二章 二次函数 第二节 结识抛物线
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
直线和圆的位置关系.
第4讲 直线与圆、圆与圆的位置关系.
章末归纳总结.
义务教育教科书(北师)九年级数学下册 第二章 二次函数 二次函数与一元二次方程的关系.
天才就是百分之一的灵感,百分之九十九的汗水!
北师大版(必修2) 课题:§2.3 直线与圆的位置关系 授课教师:韩伟 年级:高中一年级 单位:阜师院附中.
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
2.3.2 抛物线的简单几何性质.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
§7.2 直线的方程(1) 1、经过两点P1(x1,y1),P2(x2,y2)的斜率公式: 2、什么是直线的方程?什么是方程的直线?
2.1.2 空间中直线与直线 之间的位置关系.
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
线段的有关计算.
圆锥曲线的统一定义.
3.3 垂径定理 第2课时 垂径定理的逆定理.
直线和平面垂直的性质定理 (高中数学课件) 伯阳双语数学科组 张馥雅.
直线与圆的位置关系.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
本章优化总结.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第四章 第四节 函数图形的描绘 一、渐近线 二、图形描绘的步骤 三 、作图举例.
抛物线的几何性质.
3.1.3 导数的几何意义.
3.1.3 导数的几何意义.
《工程制图基础》 第四讲 几何元素间的相对位置.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
直线和圆的位置关系 ·.
空间平面与平面的 位置关系.
双曲线的性质.
一元二次不等式解法(1).
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
2.4.2 抛物线的简单几何性质.
一元二次不等式的解法.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
§2-2 点的投影 一、点在一个投影面上的投影 二、点在三投影面体系中的投影 三、空间二点的相对位置 四、重影点 五、例题 例1 例2 例3
直线的倾斜角与斜率.
双曲线及其标准方程(1).
选修1—1 导数的运算与几何意义 高碑店三中 张志华.
用待定系数法求二次函数的解析式.
Xue.
3.3.2 两点间的距离 山东省临沂第一中学.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
Presentation transcript:

第9讲 圆锥曲线的热点问题

(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ,则Δ>0⇔直线与圆锥曲线C ; (2)当a=0,b≠0时,即得到一个一次方程,则直线l与圆锥曲线C相交,且只有一个交点,此时,若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行;若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行. 相交 相切 无公共点

[感悟·提升] 两个防范 一是在解决直线与抛物线的位置关系时,要特别注意直线与抛物线的对称轴平行的特殊情况,如(2); 二是中点弦问题,可以利用“点差法”,但不要忘记验证Δ>0或说明中点在曲线内部,如(5).

规律方法 将直线与圆锥曲线的两个方程联立成方程组,然后判断方程组是否有解,有几个解,这是直线与圆锥曲线位置关系的判断方法中最常用的方法,注意:在没有给出直线方程时,要对是否有斜率不存在的直线的情况进行讨论,避免漏解.

规律方法 直线与圆锥曲线的弦长问题,较少单独考查弦长的求解,一般是已知弦长的信息求参数或直线的方程.解此类题的关键是设出交点的坐标,利用求根公式得到弦长,将已知弦长的信息代入求解.

(1)求椭圆C的方程; (2)如图,A、B、D是椭圆C的顶点,P是椭圆C上除顶点外的任意一点,直线DP交x轴于点N,直线AD交BP于点M,设BP的斜率为k,MN的斜率为m.证明:2m-k为定值. 审题路线 (2)写出直线BP的方程⇒与椭圆方程联立解得P点坐标⇒写出直线AD的方程⇒由直线BP与直线AD的方程联立解得M点坐标⇒由D、P、N三点共线解得N点坐标⇒求直线MN的斜率m⇒作差:2m-k为定值.

规律方法 求定值问题常见的方法有两种: (1)从特殊入手,求出定值,再证明这个值与变量无关. (2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

规律方法 圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.

1.涉及弦长的问题时,应熟练地利用求根公式,设而不求计算弦长;涉及垂直关系往往也是利用根与系数的关系设而不求简化运算;涉及过焦点的弦的问题,可考虑利用圆锥曲线的定义求解. 2.关于圆锥曲线的中点弦问题 直线与圆锥曲线相交所得弦中点问题,是解析几何的内容之一,也是高考的一个热点问题.这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题;(2)求弦中点的轨迹方程问题;(3)弦长为定值时,弦中点的坐标问题.其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等.

3.圆锥曲线综合问题要四重视: (1)重视定义在解题中的作用;(2)重视平面几何知识在解题中的作用;(3)重视求根公式在解题中的作用;(4)重视曲线的几何特征与方程的代数特征在解题中的作用.    

[反思感悟] (1)本题是圆锥曲线中的探索性问题,也是最值问题,求圆锥曲线的最值问题是高考考查的一个重点,通常是先建立一个目标函数,然后利用函数的单调性或基本不等式求最值. (2)本题的第一个易错点是表达不出椭圆C上的点到Q(0,2)的距离的最大值;第二个易错点是没有掌握探索性问题的解题步骤;第三个易错点是没有正确使用基本不等式.

答题模板 探索性问题答题模板: 第一步:假设结论存在.,第二步:结合已知条件进行推理求解. 第三步:若能推出合理结果,经验证成立即可肯定正确;若推出矛盾,即否定假设. 第四步:反思回顾,查看关键点、易错点及解题规范.如 本题中易忽略直线l与圆O相交 这一隐含条件.