二分图匹配 匈牙利算法和KM算法简介.

Slides:



Advertisements
Similar presentations
因数与倍数 2 、 5 的倍数的特征
Advertisements

3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
阻塞操作. 在 linux 里,一个等待队列由一个 wait_queue_head_t 类型的结构来描述 等待队列的初始化: static wait_queue_head_t testqueue; init_waitqueue_head(&testqueue);
图论2 江川.
第二章 二次函数 第二节 结识抛物线
10.2 立方根.
四种命题 2 垂直.
1.1.3四种命题的相互关系 高二数学 选修2-1 第一章 常用逻辑用语.
最大团问题 回溯法应用 作者:余新华 时间:
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
2-7、函数的微分 教学要求 教学要点.
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
第七部分 图论方法 第十二章 图论方法.
强连通分量 无向图 1、任意两顶点连通称该图为连通图 2、否则将其中的极大连通子图称为连通分量 A D C B E 有向图
离散数学课程组 南京大学计算机科学与技术系
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
动态规划(Dynamic Programming)
绿色圃中小学教育网 比例 比例的意义 绿色圃中小学教育网
北师大版三年级数学下册 分数比大小.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
本节内容 平行线的性质 4.3.
1.1特殊的平行四边形 1.1菱形.
28.1 锐角三角函数(2) ——余弦、正切.
使用矩阵表示 最小生成树算法.
2.1.2 空间中直线与直线 之间的位置关系.
第八模块 复变函数 第二节 复变函数的极限与连续性 一、复变函数的概念 二、复变函数的极限 二、复变函数的连续性.
无向树和根树.
第二十二章 曲面积分 §1 第一型曲面积分 §2 第二型曲面积分 §3 高斯公式与斯托克斯公式.
线段的有关计算.
2.3等腰三角形的性质定理 1.
第四章 四边形性质探索 第五节 梯形(第二课时)
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
3.4 圆心角(1).
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
定理21.9(可满足性定理)设A是P(Y)的协调子集,则存在P(Y)的解释域U和项解释,使得赋值函数v(A){1}。
iSIGHT 基本培训 使用 Excel的栅栏问题
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
3.16 枚举算法及其程序实现 ——数组的作用.
1.2 子集、补集、全集习题课.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
树和图 tree and graph 蔡亚星.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
第 四 章 迴歸分析應注意之事項.
第七、八次实验要求.
上杭二中 曾庆华 上杭二中 曾庆华 上杭二中 曾庆华.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
2.2直接证明(一) 分析法 综合法.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
高中数学必修 平面向量的基本定理.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
3.4 角的比较.
基于学案制作ppt 录屏工具使用 郑建彬.
位似.
二分图匹配.
使用Fragment 本讲大纲: 1、创建Fragment 2、在Activity中添加Fragment
§4.5 最大公因式的矩阵求法( Ⅱ ).
一元一次方程的解法(-).
最小生成树 最优二叉树.
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
第三章 图形的平移与旋转.
Presentation transcript:

二分图匹配 匈牙利算法和KM算法简介

二分图的概念 二分图又称作二部图,是图论中的一种特殊模型。 设G=(V,{R})是一个无向图。如顶点集V可分割为两个互不相交的子集,并且图中每条边依附的两个顶点都分属两个不同的子集。则称图G为二分图。 1 2 3 4 5

最大匹配 给定一个二分图G,在G的一个子图M中,M的边集{E}中的任意两条边都不依附于同一个顶点,则称M是一个匹配。 选择这样的边数最大的子集称为图的最大匹配问题(maximal matching problem) 如果一个匹配中,图中的每个顶点都和图中某条边相关联,则称此匹配为完全匹配,也称作完备匹配。

匈牙利算法 求最大匹配的一种显而易见的算法是:先找出全部匹配,然后保留匹配数最多的。但是这个算法的复杂度为边数的指数级函数。因此,需要寻求一种更加高效的算法。 增广路的定义(也称增广轨或交错轨): 若P是图G中一条连通两个未匹配顶点的路径,并且属M的边和不属M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。

匈牙利算法 由增广路的定义可以推出下述三个结论: 1-P的路径长度必定为奇数,第一条边和最后一条边都不属于M。 3-M为G的最大匹配当且仅当不存在相对于M的增广路径。

匈牙利算法 用增广路求最大匹配(称作匈牙利算法,匈牙利数学家Edmonds于1965年提出) 算法轮廓: (1)置M为空 (2)找出一条增广路径P,通过取反操作获得更大的匹配M’代替M (3)重复(2)操作直到找不出增广路径为止

匈牙利算法 程序清单: Function find(k:integer):integer; var st,sf,i,j,t:integer; queue,father:array[1..100] of integer; begin queue[1] := k; st := 1; sf := 1; fillchar(father,sizeof(father),0); repeat

匈牙利算法 for i:=1 to n do if (father[i]=0)and(a[queue[st],i]=1) then begin if match2[i]<>0 then inc(sf); queue[sf] := match2[i]; father[i] := queue[st]; end else

匈牙利算法 begin j := queue[st]; while true do t := match1[j]; match1[j] := i; match2[i] := j; if t = 0 then break; i := t; j := father[t];

匈牙利算法 end; find := 1; exit; inc(st); until st>sf; find := 0;

匈牙利算法 在主程序中调用下面的程序即可得出最大匹配数。 Bmatch := 0; For I:=1 to n do Bmatch := Bmatch + find(i); Writeln(Bmatch); 一个关于二分图的性质: 最大匹配数+最大独立集=X+Y

最佳匹配 如果边上带权的话,找出权和最大的匹配叫做求最佳匹配。 实际模型:某公司有职员x1,x2,…,xn,他们去做工作y1,y2,…,yn,每个职员做各项工作的效益未必一致,需要制定一个分工方案,使得人尽其才,让公司获得的总效益最大。 数学模型:G是加权完全二分图,求总权值最大的完备匹配。

KM算法 穷举的效率-n!,我们需要更加优秀的算法。 定理: 设M是一个带权完全二分图G的一个完备匹配,给每个顶点一个可行顶标(第i个x顶点的可行标用lx[i]表示,第j个y顶点的可行标用ly[j]表示),如果对所有的边(i,j) in G,都有lx[i]+ly[j]>=w[i,j]成立(w[i,j]表示边的权),且对所有的边(i,j) in M,都有lx[i]+ly[j]=w[i,j]成立,则M是图G的一个最佳匹配。证明很容易。

KM算法 对于任意的G和M,可行顶标都是存在的: l(x) = maxw(x,y) l(y) = 0 欲求完全二分图的最佳匹配,只要用匈牙利算法求其相等子图的完备匹配;问题是当标号之后的Gl无完备匹配时怎么办?1957年(居然比匈牙利算法早???),Kuhn和Munkras给出了一个解决该问题的有效算法,用逐次修改可行顶标l(v)的办法使对应的相等子图之最大匹配逐次增广,最后出现完备匹配。

KM算法 修改方法如下: 先将一个未被匹配的顶点u(u in {x})做一次增广路,记下哪些结点被访问那些结点没有被访问。求出d=min{lx[i]+ly[j]-w[i,j]}其中i结点被访问,j结点没有被访问。然后调整lx和ly:对于访问过的x顶点,将它的可行标减去d,对于所有访问过的y顶点,将它的可行标增加d。修改后的顶标仍是可行顶标,原来的匹配M仍然存在,相等子图中至少出现了一条不属于M的边,所以造成M的逐渐增广。

KM算法 上述算法的证明也很容易 Kuhn-Munkras算法流程: (1)初始化可行顶标的值 (2)用匈牙利算法寻找完备匹配 (3)若未找到完备匹配则修改可行顶标的值 (4)重复(2)(3)直到找到相等子图的完备匹配为止

参考文献 王树禾《离散数学引论》 吴文虎 王建德《图论算法与程序设计》 刘汝佳 黄亮《算法艺术与信息学竞赛》 2002年冬令营论文-孙方成《偶图的算法及应用》 2004年冬令营论文-黄源河《浅谈图论模型的建立与应用》

例题1 Place the Robots(ZOJ1654) 问题描述 有一个N*M(N,M<=50)的棋盘,棋盘的每一格是三种类型之一:空地、草地、墙。机器人只能放在空地上。在同一行或同一列的两个机器人,若它们之间没有墙,则它们可以互相攻击。问给定的棋盘,最多可以放置多少个机器人,使它们不能互相攻击。 Wall Grass Empty

例题1 Place the Robots(ZOJ) 模型一 5 4 6 7 8 3 2 1 在问题的原型中,草地,墙这些信息不是我们所关心的,我们关心的只是空地和空地之间的联系。因此,我们很自然想到了下面这种简单的模型: 以空地为顶点,有冲突的空地间连边,我们可以得到右边的这个图: 1 2 3 4 6 5 7 8 于是,问题转化为求图的最大独立集问题。

例题1 Place the Robots(ZOJ) 模型一 5 4 6 7 8 3 2 1 在问题的原型中,草地,墙这些信息不是我们所关心的,我们关心的只是空地和空地之间的联系。因此,我们很自然想到了下面这种简单的模型: 以空地为顶点,有冲突的空地间连边,我们可以得到右边的这个图: 1 2 3 4 6 5 7 8 这是NP问题!

例题1 Place the Robots(ZOJ) 模型二 1 我们将每一行,每一列被墙隔开,且包含空地的连续区域称作“块”。显然,在一个块之中,最多只能放一个机器人。我们把这些块编上号。 2 3 4 5 1 2 3 4 同样,把竖直方向的块也编上号。

例题1 Place the Robots(ZOJ) 模型二 1 把每个横向块看作X部的点,竖向块看作Y部的点,若两个块有公共的空地,则在它们之间连边。 2 3 4 于是,问题转化成这样的一个二部图: 5 1 2 3 4 1 2 3 4 5

例题1 Place the Robots(ZOJ) 模型二 1 1 2 3 4 5 2 3 4 5 由于每条边表示一个空地,有冲突的空地之间必有公共顶点,所以问题转化为二部图的最大匹配问题。 1 2 3 4

例题1 Place the Robots(ZOJ) 小结 比较前面的两个模型:模型一过于简单,没有给问题的求解带来任何便利;模型二则充分抓住了问题的内在联系,巧妙地建立了二部图模型。为什么会产生这种截然不同的结果呢?其一是由于对问题分析的角度不同:模型一以空地为点,模型二以空地为边;其二是由于对原型中要素的选取有差异:模型一对要素的选取不充分,模型二则保留了原型中“棋盘”这个重要的性质。由此可见,对要素的选取,是图论建模中至关重要的一步。

例题2 救护伤员(TOJ1148) 无情的海啸夺取了无数人的生命.很多的医疗队被派往灾区拯救伤员.就在此时,医疗队突然发现自己带的药品已经不够用了,只剩下了N种。(1 < n <= 20),随着病人病情的发展,每种药在每天能获得的效果是不一样的。同时,每天病人只能服用一种药。也就是说,这些药还够支持N天。现在,给出你每种药在每天使用的效果,请你判断当每种药都用完后所有药达到的效果之和最大可以是多少。

例题3 打猎 猎人要在n*n的格子里打鸟,他可以在某一行中打一枪,这样此行中的所有鸟都被打掉,也可以在某一列中打,这样此列中的所有鸟都打掉。问至少打几枪,才能打光所有的鸟? 建图:二分图的X部为每一行,Y部为每一列,如果(i,j)有一只鸟,那么连接X部的i与Y部的j。 该二分图的最大匹配数则是最少要打的枪数。

例题4 最小路径覆盖 一个不含圈的有向图G中,G的一个路径覆盖是一个其结点不相交的路径集合P,图中的每一个结点仅包含于P中的某一条路径。路径可以从任意结点开始和结束,且长度也为任意值,包括0。请你求任意一个不含圈的有向图G的最小路径覆盖数。 理清一个关系:最小路径覆盖数=G的定点数-最小路径覆盖中的边数

例题4 最小路径覆盖 试想我们应该使得最小路径覆盖中的边数尽量多,但是又不能让两条边在同一个顶点相交。 拆点:将每一个顶点i拆成两个顶点Xi和Yi。然后根据原图中边的信息,从X部往Y部引边。所有边的方向都是由X部到Y部。

例题4 最小路径覆盖 因此,所转化出的二分图的最大匹配数则是原图G中最小路径覆盖上的边数。因此由最小路径覆盖数=原图G的顶点数-二分图的最大匹配数便可以得解。