鄞州区智慧教育“空中课堂” 新初三年级(A)班 第一讲 多边形与平行四边形 兴宁中学 李曙锋 QQ:1139084041.

Slides:



Advertisements
Similar presentations
平行四边形的判定 新海实验中学苍梧校区 王欣.
Advertisements

2011年广西高考政治质量分析 广西师范大学附属外国语学校 蒋 楠.
财经法规与会计职业道德 (3) 四川财经职业学院.
发展心理学 王 荣 山.
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
1.5 三角形全等的判定(4).
同学们好! 肖溪镇竹山小学校 张齐敏.
第七章 财务报告 主讲老师:王琼 上周知识回顾.
梯形的中位线.
22.2 平行四边形的判定 (第2课时) 石家庄市第四十一中学 冯朝.
习题课 阶段方法技巧训练(一) 专训1 三角形判定的 六种应用.
27.2相似三角形的判定1 预备定理.
平行四边形的判别.
19.3 梯形(第1课时) 等腰梯形.
北师大版四年级数学上册 平移与平行.
习题课 阶段方法技巧训练(一) 专训2 切线的判定和性质 的四种应用类型.
特殊的平行四边形复习.
鄞州区智慧教育“空中课堂” 新初三年级(A)班 第二讲 特殊的平行四边形 兴宁中学 李曙锋 QQ:
12.3 角的平分线的性质 (第2课时).
第十八章 平行四边形 三角形的中位线 zx``xk.
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
如图,平行四边形ABCD,AC、BD相交于点O,过点O的EF与AD、BC交于E、F两点,OE与OF,相等吗?为什么?
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
本节内容 平行线的性质 4.3.
知识回顾: 1. 平行四边形具有哪些性质? 平行四边形的性质: 1、边:平行四边形对边平行且相等。 2、角:平行四边形对角相等,邻角互补。
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
1.1特殊的平行四边形 1.1菱形.
第六章 特殊的平行四边形 6.1 矩形(1).
初二上复习综合题集.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
初三数学总复习《特殊四边形》 文金铭 2010年4月12.
线段的有关计算.
§ 矩形的定义、性质 矩形 本资料来自于资源最齐全的21世纪教育网
正方形 ——计成保.
3.3勾股定理的简单应用 初二数学备课组 蔡晓琼.
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
相似三角形 石家庄市第十中学 刘静会 电话:
D B A C 菱形的判定 苏州学府中学 金鑫.
. 1.4 全等三角形.
一个直角三角形的成长经历.
七年级上册 第四章 几何图形初步 直线、射线、线段 (第2课时) 安徽省无为县刘渡中心学校 丁浩勇.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
1.5 三角形全等的判定 第2课时 “边角边”与线段的垂直平分线的性质.
第五章 相交线与平行线 三线八角.
冀教版八年级下册 22、2平行四边形的判定(2) 东城中学 孙雅力.
正 方 形.
2.6 直角三角形(1).
例1.如图,已知:AB∥CD,∠A=70°∠DHE=70°,求证:AM∥EF
数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。      ——毕达哥拉斯
岱山实验学校欢迎你 岱山实验学校 虞晓君.
欢迎各位老师莅临指导! 海南华侨中学 叶 敏.
九年级数学(上) 第一章 特殊平行四边形 2.正方形的性质与判定—判定.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
(人教版) 数学八年级上册 12.3 等腰三角形(1) 磐石市实验中学.
18.2 特殊的平行四边形 矩形(1).
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
13.3 等腰三角形 (第3课时).
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
平行四边形的性质 鄢陵县彭店一中 赵二歌.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
高中数学必修 平面向量的基本定理.
坚持,努力,机会留给有准备的人 第一章 四大金融资产总结 主讲老师:陈嫣.
6.3正方形. 6.3正方形 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。 1. 正方形的定义 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
再认相似三角形 普陀二中 洪秀捷.
19.1平行四边形的性质⑵.
19.2 特殊的平行四边形 矩形.
第19章 四边形 小结和复习.
正方形的性质.
Presentation transcript:

鄞州区智慧教育“空中课堂” 新初三年级(A)班 第一讲 多边形与平行四边形 兴宁中学 李曙锋 QQ:1139084041

平行四边形及特殊的平行四边形的知识要点 边: 直接证法 角: 三、判定 一、定义 二、性质 间接证法 对角线: 对称性: ∠DAB=90° AB=AD AB=AD且∠DAB=90° ∠DAB=90° AB=AD 边: 直接证法 角: 三、判定 一、定义 二、性质 间接证法 对角线: 对称性:

例1.已知四边形ABCD,有以下四个条件:①AB∥CD;②AB=CD;③BC∥AD;④BC=AD;⑤∠A=∠C.从这四个条件中任选两个,能使四边形ABCD成为平行四边形的选法种数共有( ) O

例2.(1)(菏泽)如图,平行四边形 ABCD中,AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折到同一平面内,若点B的落点记为B′,则DB′的长为 .

例2、(2)(2013•宜宾)如图,在△ABC中,∠ABC=90°,BD为AC的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,CF=6,则四边形BDFG的周长为   .

例3.(1)(2014•襄阳)在□ABCD中,BC边上的高为4,AB=5,AC=2 ,

例3、(2)(2015•襄阳)在□ABCD中,AD=BD,BE是AD边上的高,∠EBD=20°,则∠A的度数为 .

例4.已知A(1,-3),B(2,-1),点M在直线y=-2x+10上运动,点N在x轴上,当以A、B、M、N为顶点的四边形是平行四边形时,求点M的坐标. (x1,y1) (x4,y4) (x2,y2) (x3,y3) 平行四边形对角顶点的横、 纵坐标之和分别相等。

例5.(2014•舟山)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.21cnjy.com (1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.求∠C,∠D的度数. (2)在探究“等对角四边形”性质时: ①小红画了一个“等对角四边形”ABCD(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论; ②由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例. (3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.

例5.(2014•舟山)类比梯形的定义,我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.21cnjy.com (3)已知:在“等对角四边形“ABCD中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长. ① ∠B=∠D=90 ° ② ∠B=∠D=90 ° F E E

例6、(1)如图,△ABC中,AB=6,AC=4, AD是∠BAC的外角平分线,CD⊥AD于D,且点E是BC的中点,则DE= . F

例6.(2)如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为 . G