第八章 常用统计分布.

Slides:



Advertisements
Similar presentations
1 §2.2 离 散 型 随 机 变 量 §2.1 随 机 变 量 的 概 念 §2.3 超几何分布 · 二项分布 · 泊松分布 1. “0-1” 分布 ( 两点分布 ) 3. 二项分布 4. Poisson 分布 2. 超几何分布 n →∞ , N→∞ , (x = 0, 1, 2, , n) (x.
Advertisements

2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
第一章 、随机事件与概率 1.1 、随机事件 1.2 、随机事件的概率 1.3 、随机事件概率的计算 1.4 、伯努利概型.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第二章 随机变量及其分布 在第一章里,我们研究了随机事件及其概率.而对于一个随机试验,我们除了对某些特定的事件发生的概率感兴趣外,往往还会关心某个与试验结果相联系的变量.由于这一变量依赖于试验结果,因而这一变量的取值具有随机性,这种变量被称为随机变量.本章将着重介绍两类随机变量——离散型随机变量和连续型随机变量及其分布.
概率论与数理统计 2.2 离散型随机变量及其分布.
概率论与数理统计 课件制作:应用数学系 概率统计课程组.
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
第四章 概率、正态分布、常用统计分布.
6.6 单侧置信限 1、问题的引入 2、基本概念 3、典型例题 4、小结.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
主要内容 § 3.1 多维随机变量及联合分布 联合分布函里数 联合分布律 联合概率密度 § 3.2 二维随机变量的边缘分布
本讲义可在网址 或 ftp://math.shekou.com 下载
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
初中数学 七年级(上册) 6.3 余角、补角、对顶角(1).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
第6章 统计量及其抽样分布 统计量 关于分布的几个概念 由正态分布导出的几个重要分布 样本均值的分布与中心极限定理 样本比例的抽样分布
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
§3.7 热力学基本方程及麦克斯韦关系式 热力学状态函数 H, A, G 组合辅助函数 U, H → 能量计算
例1 :甲击中的环数; X :乙击中的环数; Y 平较高? 试问哪一个人的射击水 : 的射击水平由下表给出 甲、乙两人射击,他们
本次课讲授:第二章第十一节,第十二节,第三章第一节, 下次课讲第三章第二节,第三节,第四节; 下次上课时交作业P29—P30
第十章 方差分析.
数据统计与分析 秦 猛 南京大学物理系 手机: 第十讲 数据统计与分析 秦 猛 南京大学物理系 办公室:唐仲英楼A 手机:
概 率 统 计 主讲教师 叶宏 山东大学数学院.
本节内容 平行线的性质 4.3.
常用概率分布 ---Poisson分布.
连续型随机变量及其概率密度 一、概率密度的概念与性质 二、常见连续型随机变量的分布 三、小结.
第七章 参数估计 7.3 参数的区间估计.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
第一章 函数与极限.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
概 率 统 计 主讲教师 叶宏 山东大学数学院.
数列.
抽样和抽样分布 基本计算 Sampling & Sampling distribution
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
应用概率统计 主讲:刘剑平.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
复习.
在第一章中,我们介绍了条件概率的概念 . 在事件B发生的条件下事件A发生的条件概率 推广到随机变量
用计算器开方.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
第五节 缓冲溶液pH值的计算 两种物质的性质 浓度 pH值 共轭酸碱对间的质子传递平衡 可用通式表示如下: HB+H2O ⇌ H3O++B-
概 率 统 计 主讲教师 叶宏 山东大学数学院.
4) 若A可逆,则 也可逆, 证明: 所以.
第4课时 绝对值.
第三章 多维随机变量及其分布 第一节 二维随机变量 第二节 边缘分布 第三节 条件分布 第四节 相互独立的随机变量
第四节 随机变量函数的概率分布 X 是分布已知的随机变量,g ( · ) 是一个已知 的连续函数,如何求随机变量 Y =g(X ) 的分布?
第一部分:概率 产生随机样本:对分布采样 均匀分布 其他分布 伪随机数 很多统计软件包中都有此工具 如在Matlab中:rand
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
§2 方阵的特征值与特征向量.
第三节 随机区组设计的方差分析 随机区组设计资料的总平方和可以分解为三项: (10.10).
难点:连续变量函数分布与二维连续变量分布
数理统计基本知识.
第十五讲 区间估计 本次课讲完区间估计并开始讲授假设检验部分 下次课结束假设检验,并进行全书复习 本次课程后完成作业的后两部分
第八章 假设检验 8.3 两个正态总体参数的假设检验.
第三章 从概率分布函数的抽样 (Sampling from Probability Distribution Functions)
§4.1数学期望.
Presentation transcript:

第八章 常用统计分布

第一节 超几何分布 适用:小群体的两分变量。假定总体为 K个成功类、(N-K)个为失败类 1.超几何分布为离散型随机变量的概率 第一节 超几何分布 适用:小群体的两分变量。假定总体为 K个成功类、(N-K)个为失败类 1.超几何分布为离散型随机变量的概率 分布,它的数学形式是 2019/4/4

2.超几何分布的数学期望值和方差 如果用 ,则有 2019/4/4

[解] 由题意可知:N=8.K=3,N―K=5.n=5,代入(8.1)式,故概率分布如下: [例] 以随机方式自5男3女的小群体中选出5人组成一个委员会,求该委员会中女性委员人数的概率分布、期望值与变异数。 [解] 由题意可知:N=8.K=3,N―K=5.n=5,代入(8.1)式,故概率分布如下: X 0 1 2 3 合计 P=(X=x) 1/56 15/56 30/56 10/56 56/56 由 , ,代入(8.4)式、(8.5)式得 (1) (2) 2019/4/4

3.关于超几何分布的近似 设某校有l000名大学生,其中有外国留学生10、名,现从该校学生中任抽2人,求抽到外国留学生的概率分布。 [解] 抽到外国留学生人数X服从N=1000、K=10、n=2的超几何分布,根据(8.1)式得 2019/4/4

由于 =0.002<0.1,用二项分布近似 计算有 ,由(8.6)式得 由于 =0.002<0.1,用二项分布近似 计算有 ,由(8.6)式得 两种方法计算结果比较一下,仅在小数点后第5位上才出现误差。当然在>0.1时,如此计算误差会比较大。另外,二项分布的计算量仍不算小,有时还可以将二项分布近似为泊松分布,这一点我们将在下一节讨论。 2019/4/4

第二节 泊松分布 适用:稀有事件的研究。一个事件的平均发生次数 是大量实验的结果,在这些试验中,此事件可能发生,但 是发生的概率非常小。 第二节 泊松分布 适用:稀有事件的研究。一个事件的平均发生次数 是大量实验的结果,在这些试验中,此事件可能发生,但 是发生的概率非常小。 泊松分布亦为离散型随机变量的概率分布,随机变量 X为样本内成功事件的次数。若λ为成功次数的期望值, 假定它为已知。而且在某一时空中成功的次数很少,超过 5次的成功概率可忽不计,那么X的某一具体取值x(即稀 有事件出现的次数)的概率分布为 2019/4/4

泊松分布的性质:x的取值为零和一切正整数;图 形是非对称的,但随着的λ增加,图形变得对称;泊松 分布的数学期望和方差均为λ。 2019/4/4

[解] 由资料知 [例] 某城市50天交通事故的频数分布如 表所示,试求泊松 ≥ 理论分布。 一天交通事故数 1 2 3 合计 天数f 23 1 2 3 合计 天数f 23 17 7 50 [解] 由资料知 查泊松分布表,得理论分布 将实测频数与理论频数比较,可知题中所述稀有事件是 满足泊松分布的。 X 1 2 3 4 合计 P 0.4493 0.3595 0.1438 0.0383 0.0091 1.0000 理论频(50хPi ) 22.4 18.0 7.2 1.9 0.5 50.0 ≥ 2019/4/4

第三节 卡方分布 卡方分布是一种连续型随机变量的概率分布,主要用于列联表 检验。 1.数学形式 第三节 卡方分布 卡方分布是一种连续型随机变量的概率分布,主要用于列联表 检验。 1.数学形式 设随机变量X1,X2,…Xk,相互独立,且都服从同一的正态 分布N (μ,σ2)。那么,我们可以先把它们变为标准正态变量 Z1,Z2,…Zk,k个独立标准正态变量的平方和被定义为卡方分布 ( 分布)的随机变量 ( 读作卡方),且 我们把随机变量 的概率分布称为 分布,其概率密度记 作 。其中k为卡方分布的自由度,它表示定义式中独立变量的个数。 2019/4/4

关于卡方分布的分布函数,附表7对不同的自由度k及不同的临 界概率α(0<α<1),给出了满足下面概率式的 的值(参见 图)。 注意 写法的含义:它 表示自由度为k的卡方分布,当 其分布函数 时,其随机变量 的临界值(参见图)。具体来说,在假设检验中,它表示在显著性水平α上卡方分布随机变量 的临界值。 2019/4/4

[解] 查卡方分布表,在表中自由度为5的横行中找到 与15最接近的数值是15.086,得到α的近似值为0.01。 由此可知 ≈0.01. [例] 试求下列各值: [解] 查卡方分布表(附表7)得 [例] 已知k=5, =15,求临界概率α。 [解] 查卡方分布表,在表中自由度为5的横行中找到 与15最接近的数值是15.086,得到α的近似值为0.01。 由此可知 ≈0.01. 2019/4/4

2. 卡方分布的性质 (1) 恒为正值 。 (2)卡方分布的期望值 是自由度k,方差 为2k。 (1) 恒为正值 。 (2)卡方分布的期望值 是自由度k,方差 为2k。 卡方分布取决于自由度k,每一个可能的自由度对应一个具体 的卡方分布。卡方分布只与自由度有关,这就给卡方分布的实际应 用带来很大方便。分布由正态分布导出,但它之所以与正态分布的 参数μ和σ无关,是因为标准正态变量Z与原来的参数无关。 (3)卡方分布具有可加性 (4)利用卡方分布可以推出样本方差 S2 的分布 式中:σ2代表总体方差,自由度为n―l。 2019/4/4

所以,样本方差S 2落在3.3和8.7之间的概率约为90%。 3. 样本方差的抽样分布 [例] 由一正态总体抽出容量为25的一随机样本,已知σ2=6,求 样本方差S 2在3.3到8.7之间的概率。 [解] 已知n=25,σ2=6,由 得 所以,样本方差S 2落在3.3和8.7之间的概率约为90%。 2019/4/4

第四节 F 分布 F 分布是连续性随机变量的另一种重要的小样本分布,可用来检验两个总体的方差是否相等,多个总体的均值是否相等。还是方差分析和正交设计的理论基础。 1.数学形式 设 和 相互独立,那么随机变量 服从自由度为(k1,k2)的F分布。其中,分子上的自由 度k1叫做第一自由度,分母上的自由度k2叫做第二自由度。 2019/4/4

k2)的值(参见图)。 我们把随机变量F的概率分 布称为F分布,其概率密度记 作 。本书附 表8,对不同自由度(k1,k2)及 作 。本书附 表8,对不同自由度(k1,k2)及 不同的临界概率α(0<α<1), 给出满足下列概率式的Fα(k1, k2)的值(参见图)。 注意 写法的含义:它表示自由度为 (k1,k2)的F 分布,当其分布函数 时,其随机变量 F 的临界值(参 见图)。具体来说,在假设检验中,它表示在显著性水平α上F 分布 随机变量 F 的临界值。 2019/4/4

[例] 试求下列各值: [解]查F分布表(附表8)得 如果 和 是两个独立随 机样本的方差,样本来源于具有相同 如果 和 是两个独立随 机样本的方差,样本来源于具有相同 方差σ2的两个正态总体,样本容量 分别为n1和n2,那么根据(8.22)式, 随机变量F 服从于自由度为(n1―1和 n2―1)的F分布。 2019/4/4

2. F分布性质 (3) F分布的期望值与变异数(方差) F分布也是一个连续的非对 称分布。 反对称性。 (1)随机变量F恒为正值, (2)分布具有一定程度的 反对称性。 (3) F分布的期望值与变异数(方差) 2019/4/4