Mechanics Exercise Class Ⅰ

Slides:



Advertisements
Similar presentations
1 FOUR SQUARE QUESTIONS! 四方塊問題 這是一個富有哲理的智力遊戲。特此翻譯為中文, 並推薦給大家。
Advertisements

-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
神愛世人, 甚至將他的獨生子賜給他們, 叫一切信他的, 不至滅亡, 反得永生。 約翰3:16.
十五條佛規 後學:張慈幸
大學入門 九九學年度光電一.
「品格教育的理念與實踐」研討會 心得分享:羅旭壯 96年5月14日(一).
自然運動 伽利略在運動學上的成就,奠定了牛頓動力學的基礎。伽利略成功的描述地球上物體的拋物運動,其主要基於兩個基本概念:
Understanding Interest Rates
XI. Hilbert Huang Transform (HHT)
普通物理 General Physics 5 – Newton's Law of Motion
普通物理 General Physics 3 – Vectors Quantities
Differential Equations (DE)
3. Motion in 2- & 3-D 二及三維運動 Vectors 向量
微積分網路教學課程 應用統計學系 周 章.
守恆律 若已知外力形式非為常數或時間之函數,亦非速度的函數,而是位置的函數,則物體的運動狀態仍可由牛頓運動定律得到:
4. Newton's Laws 牛頓定律 The Wrong Question 問錯題
非線性規劃 Nonlinear Programming
普通物理 General Physics 2 – Straight Line Motion
普通物理 General Physics 11 - Rotational Motion II 郭艷光Yen-Kuang Kuo
Continuous Probability Distributions
普通物理 General Physics 8 – Conservation of Energy
第五章 剛體運動 當我們不再考慮物體為一質點,而是一有限大小的實體時,以粒子為考量中心所推論出的運動定律將不再足以描述此物體的運動狀態與變化。
第二章 共轴球面系统的物像关系 Chapter 2: Object-image relations of coaxial spheric system.
Properties of Continuous probability distributions
普通物理 General Physics 27 - Circuit Theory
Fundamentals of Physics 8/e 27 - Circuit Theory
附加内容 “AS”用法小结(1).
第二十九單元 方向導數與梯度.
Short Version : 6. Work, Energy & Power 短版: 6. 功,能和功率
普通物理 General Physics 9 - Center of Mass and Momentum
冠词的特殊位置(续).
干涉與繞射(I) 有哪些現象是和『干涉』『繞射』有關? 為什麼有的叫干涉?有的叫繞射?如何區分? 同調性 coherent.
普通物理 General Physics 10 - Rotational Motion I
普通物理 General Physics 7 – Work-Kinetic Energy Theorem
机器人学基础 第四章 机器人动力学 Fundamentals of Robotics Ch.4 Manipulator Dynamics
本章大綱 2.1 The Limit of a Function函數的極限 2.2 Limit Laws極限的性質
普通物理 General Physics 29 - Current-Produced Magnetic Field
Short Version :. 11. Rotational Vectors & Angular Momentum 短版:. 11
Interval Estimation區間估計
子博弈完美Nash均衡 我们知道,一个博弈可以有多于一个的Nash均衡。在某些情况下,我们可以按照“子博弈完美”的要求,把不符合这个要求的均衡去掉。 扩展型博弈G的一部分g叫做一个子博弈,如果g包含某个节点和它所有的后继点,并且一个G的信息集或者和g不相交,或者整个含于g。 一个Nash均衡称为子博弈完美的,如果它在每.
塑膠材料的種類 塑膠在模具內的流動模式 流動性質的影響 溫度性質的影響
普通物理 General Physics 22 - Finding the Electric Field-I
Short Version : 5. Newton's Laws Applications 短版: 5. 牛頓定律的應用
句子成分的省略(1).
Short Version : 9. Systems of Particles 短版: 9.多質點系统
FOUR SQUARE QUESTIONS! 四方塊問題 這是一個富有哲理的智力遊戲。.
普通物理 General Physics 21 - Coulomb's Law
行星運動 人類對天體的運行一直充滿著好奇與幻想,各式各樣的傳說與理論自古即流傳於各地。在這些論述中,不乏各式神鬼傳說與命運註解,也包含了許多爭論不休的學術觀點。雖然這些形而上的虛幻傳奇仍然流傳於坊間,但是科學上的爭執卻因牛頓重力理論(law of gravitation)的出現而大致底定。
高性能计算与天文技术联合实验室 智能与计算学部 天津大学
Summary for Chapters 24 摘要: 24章
科學遊戲實作_SM的魔法教室 私立協同中學物理教師 何世明.
線性規劃模式 Linear Programming Models
运动学 第一章 chapter 1 kinematices.
12. Static Equilibrium 靜力平衡
Q & A.
Part One: Mechanics 卷一:力學
Nucleon EM form factors in a quark-gluon core model
Mechanics Exercise Class Ⅱ
商用微積分:觀念與應用 CH1 微積分預備知識.
虚拟语气(1).
名词从句(4) (复习课).
动词不定式(6).
12. Static Equilibrium 靜力平衡
定语从句(2).
Grammar (1) Cardinal and ordinal numbers 基数词和序数词
二项式的分解因式 Factoring binomials
句子成分的省略(3).
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
Summary : 4. Newton's Laws 摘要: 4. 牛頓定律
Principle and application of optical information technology
Presentation transcript:

Mechanics Exercise Class Ⅰ

英文数字、算式表达法 =  is equal to / equals > is larger than < is less than >> is much greater than a = b + c   a is equal to b plus c a = b - c    a is equal to b minus c a = b x c   a is equal to b times c / a equals to b multiplied by c a = b/c    a is equal to b divided by c / a equals to b over c    (square) root x / the square root of x      cube root (of) x ;  fourth root (of) x ;   nth root (of) x  

英文数字、算式表达法 f( x ) fx / f of x / the function f of x     the limit as x approaches zero      the integral from zero to infinity   x2    x square / x to the second power / x to the power two x3    x cube / x to the third power / x to the power three x7 the seventh power of x(x to the seventh power) lognX  log x to the base n

Important Formulas Newton’s Second Law Drag Force Centripetal Acceleration Work and Kinetic Energy Work Done by a Constant Force Work Done by a Spring Force Work Done by a Variable Force

52P A model rocket fired vertically from the ground ascends with a constant vertical acceleration of the 4.00m/s2for 6.00 s. Its fuel is then exhausted ,so it continues upward as a free-fall particle and then falls back down. (a) What is the maximum altitude reached? (b) What is the total time elapsed from the takeoff until the rocket strikes the ground? P30 Solution: (a) One key idea is since the fuel is exhausted and before the rocket strikes the ground, its acceleration is g of magnitude. And when the fuel is exhausted ,the velocity is (upward) y then we can get the position of the rocket Second key idea is the velocity equals zero, when the rocket is at maximum altitude. Using Eq 2-16, we obtain So the maximum altitude is

(b) Since the fuel is exhausted and before the rocket returns, the time interval is Then the rocket from the maximum altitude falls back to the ground. From the Eq. 2-15, we can obtain Work out this equation, yielding So the total time elapsed from the takeoff until the rocket strikes the ground is

43p. A block of mass m1 on a frictionless inclined plane of angle is connected by a cord over a massless , frictionless pulley to a second block of mass m2 hanging vertically. What (a) the magnitude of the acceleration of each block and (b) The direction of the acceleration of the hanging block? (c) what is the tension of the cord? P96 Solution: Choose m2 to be a system and draw it’s free-body diagram With Newton’s second law applied to the m2 system, we can obtain m1 m2 m2 m2g T (1) Choose m1 to be a system and draw it’s free-body diagram and we can write Parallel direction m1g N T Perpendicular direction The acceleration components a1 and a2, have the same value since the string does not stretch, thus (2)

Now we can solve equation (1) and (2) simultaneously for T and a2 Now we can solve equation (1) and (2) simultaneously for T and a2. First solve equation (1) for T (3) Then substitute for T into equation (2): Solving for a2, we find Discussion : If the direction of the acceleration of the hanging block is vertically downward. On the other hand if the direction is vertically upward. Substituting for a2 for Eq. (3), we find that tension in the rope is of magnitude

The force shown in the Fig. has magnitude Fp=20N and makes an angle of 300 to the ground .Calculate the work done by this force when the wagon is dragged 100m along the ground. Solution: We choose the x axis horizontal to the right And the y axis vertical upward. Then Whereas d=100m. Then using Eq (Dot product)

24E. A 5.0kg block moves in a straight line on a horizontal frictionless surface Under the influence of a force that varies with position as shown in Fig. 7-31 How much work is done by the force as the block moves from the origin to x=8.0m? P138 Solution: A block moves in a one-dimension line, so The Eq7-36 can be simplified as Key idea: the work done the system by the force component Fx as the system moves from xi to xf is the area under the curve between xi and xf . The work done is the area under the graph between x=0m to x=8.0m is

2.8.3一辆卡车在平直路面上以恒定速率30m/s行驶,在此车上射出一抛体,要求在车前进60m时,抛体仍落回到车上原抛出点,问抛体射出时相对于卡车的初速度的大小和方向,空气阻力不计。P59 解,以卡车为参照系,以起抛点为坐标原点,建立直角坐标 系o-xy,如图所示。以抛出时刻为计时起点。 由已知, 得: 表明:抛射体相对卡车以9.8m/s的速率竖直上抛时, 当卡车前进了60m,抛体落回抛射点。

3.4.5质量为 的斜面可在光滑的水平面上滑动,斜面倾为 ,质量为 的运动员与斜面之间亦无摩擦,求运动员相对斜面的加速度及其对斜面的压力。P108 解,隔离物体: 对于 对于 联立求解:

3.4.9 跳伞运动员初张伞时的速度为 ,阻力大小与速度平方 成正比: ,人伞总质量为m。求 的函数。P109 3.4.9 跳伞运动员初张伞时的速度为 ,阻力大小与速度平方 成正比: ,人伞总质量为m。求 的函数。P109 提示: 积分时可利用式 解: 令 上式写成 积分 代入

4.3.1 质量为m=0.5kg的木块可在水平光滑直杆上滑动。木块与一不可伸长的轻绳相连。绳跨过一固定的光滑小环。绳端作用着大小不变的力T=50N.木块在A点时具有向右的速率。求力T将木块自A拉至B点的速度。P152 T A B 解: 做功为零 由动能定理: 式中 A B o 利用积分公式: 则上式