线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时7分 / 45.

Slides:



Advertisements
Similar presentations
因数与倍数 2 、 5 的倍数的特征
Advertisements


3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
第二章 导数与微分 习题课 主要内容 典型例题 测验题. 求 导 法 则求 导 法 则 求 导 法 则求 导 法 则 基本公式 导 数 导 数 微 分微 分 微 分微 分 高阶导数 高阶微分 一、主要内容.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.3 函数的微分. 四川财经职业学院 课前复习 高阶导数的定义和计算方法。 作业解析:
第四单元 100 以内数的认识
2 、 5 的倍数的特征 玉田百姓. 1 、在 2 、 3 、 5 、 8 、 10 、 12 、 25 、 40 这几个数中, 40 的因数有几个? 5 的倍数有几个? 复习: 2 、在 6 、 10 、 12 、 15 、 18 、 20 这几个数中,哪些数 是 2 的倍数?哪些数是 5 的倍数?
《线性代数》 下页结束 返回下页 任课教师:王传伟 部 门:信息学院 办公室:文理大楼 725 室 电 话: : 快 乐 学 习快 乐 学 习 Linear Algebra Fetion No : QQ.
高等代数与空间解析几何 第一章 n阶行列式 1.1 n阶行列式 二阶、三阶行列式 n阶行列式的概念来源于对线性方程组的研究:
国家精品课 线性代数与空间解析几何 王宝玲 哈工大数学系代数与几何教研室
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
绪 论 一、课程内容 线性代数是是中学代数的继续和发展。
第一节 二阶与三阶行列式 线性代数 扬州大学数学科学学院.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
第二章 行列式 行列式的定义与性质 行列式的计算 Cramer 法则 解线性方程组的消元法 消去法的应用.
《高等数学》(理学) 常数项级数的概念 袁安锋
第五章 矩阵与行列式 §5.4 逆矩阵 §5.5 矩阵的初等变换.
§1 线性空间的定义与性质 ★线性空间的定义 ★线性空间的性质 ★线性空间的子空间 线性空间是线性代数的高等部分,是代数学
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第二章 行列式 第一节 二阶、三阶行列式.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三章 导数与微分 习 题 课 主要内容 典型例题.
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第二章 矩阵(matrix) 第8次课.
元素替换法 ——行列式按行(列)展开(推论)
!!! 请记住:矩阵是否等价只须看矩阵的秩是否相同。
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第一章 行 列 式 在初等数学中,我们用代入消元法或加减消元法求解 二元和三元线性方程组,可以看出,线性方程组的解完
计算.
数列.
6.4不等式的解法举例(1) 2019年4月17日星期三.
线性代数 第二章 矩阵 §1 矩阵的定义 定义:m×n个数排成的数表 3) 零矩阵: 4) n阶方阵:An=[aij]n×n
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
三角函数诱导公式(1) 江苏省高淳高级中学 祝 辉.
5.2 常用统计分布 一、常见分布 二、概率分布的分位数 三、小结.
第#讲.
第一章 行列式 Determinant.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§8.3 不变因子 一、行列式因子 二、不变因子.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
4) 若A可逆,则 也可逆, 证明: 所以.
线性代数 第十一讲 分块矩阵.
2、5的倍数的特征 马郎小学 陈伟.
2.2矩阵的代数运算.
上杭二中 曾庆华 上杭二中 曾庆华 上杭二中 曾庆华.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
线 性 代 数 厦门大学线性代数教学组 2019年5月12日4时19分 / 45.
A经有限次初等变换化为B,称A与B等价,记作A→B.
§2 方阵的特征值与特征向量.
2、5、3的倍数的特征.
主讲教师 欧阳丹彤 吉林大学计算机科学与技术学院
定义5 把矩阵 A 的行换成同序数的列得到的矩阵,
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
三角 三角 三角 函数 余弦函数的图象和性质.
§4.5 最大公因式的矩阵求法( Ⅱ ).
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
Presentation transcript:

线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时7分 / 45

§1.4 方阵的行列式 一、行列式的定义 二、行列式的性质 2019年4月24日6时7分 / 45

一、二阶行列式的引入 用消元法解二元线性方程组

方程组的解为 由方程组的四个系数确定.

二阶线性方程组解的一般表达式(Cramer法则)

定义1.4.1 称为3阶矩阵A的行列式.

三阶行列式的计算 沙路法

例 解 按沙路法法则,有

例 解 方程左端

n阶行列式的定义 一阶矩阵的行列式; 二阶矩阵的行列式; 三阶矩阵的行列式 推广到一般矩阵。

再看三阶行列式 三阶行列式包括3!项,每一项都是位于不同行, 不同列的三个元素的乘积,其中三项为正,三项为 负.

1 2 3 1 2 3 1 2 1 3 1 2 3 排列 引例 用1、2、3三个数字,可以组成多少个没有重复数字的三位数? 解 百位 1 2 3 解 百位 1 2 3 3种放法 十位 1 2 1 3 2种放法 1种放法 个位 1 2 3 共有 种放法.

个不同的元素的所有排列的种数,通常用 表示. 问题: 定义1.4.2 个不同的元素的所有排列的种数,通常用 表示. 由引例 同理

排列的逆序数 规定各元素之间有一个标准次序, n 个不同的自然数,规定由小到大为标准次序. 在一个排列 中,若数 则称这两个数组成一个逆序. 例如 排列32514 中, 逆序 3 2 5 1 4 逆序 逆序

一个排列中所有逆序的总数称为此排列的逆序数. 例如 排列32514 中, 3 2 5 1 4 1 逆序数为3 故此排列的逆序数为3+1+0+1+0=5.

排列的奇偶性 逆序数为奇数的排列称为奇排列; 逆序数为偶数的排列称为偶排列. 计算排列逆序数的方法

例 计算下列排列的逆序数,并讨论它们的奇偶性. 解 此排列为偶排列.

解 当 时为偶排列; 当 时为奇排列.

定义1.4.3 在一个n元排列中,将其某两个元素对调位置并保持其余元素不动来构造新排列的方式,称作对换. 将相邻两个元素对调,叫做相邻对换. 例如

对换与排列的奇偶性的关系 定理1.4.1  对换改变排列的奇偶性. 证明 设排列为 对换 与 除 外,其它元素的逆序数不改变.

当 时, 的逆序数不变; 经对换后 的逆序数增加1 , 当 时, 经对换后 的逆序数不变 , 的逆序数减少1. 因此对换相邻两个元素,排列改变奇偶性. 设排列为 现来对换 与

次相邻对换 次相邻对换 次相邻对换 所以一个排列中的任意两个元素对换,排列改变 奇偶性.

推论1.4.1 奇排列可经过奇数次对调变成自然排列, 偶排列可经过偶数次对调变成自然排列.

n阶行列式的定义 三阶矩阵A的行列式 说明 (1)三阶行列式共有 项,即 项. (2)每项都是位于不同行不同列的三个元素的乘积.

(3)每项的正负号都取决于位于不同行不同列 的三个元素的下标排列. 例如 列标排列的逆序数为 偶排列 列标排列的逆序数为 奇排列

说明 1、 阶行列式是 项的代数和; 2、 阶行列式的每项都是位于不同行、不同列 个元素的乘积; 3、 一阶行列式 不要与绝对值记号相混淆;

例 计算下三角矩阵的行列式

例 计算上三角矩阵的行列式

例 证明对角行列式

证明 第一式是显然的,下面证第二式. 若记 则依行列式定义 证毕

例 设 证明

再看三阶行列式