课件制作:淮北矿业集团公司中学纪迎春 10.7相互独立事件同时发生的概率 授课教师:纪迎春.

Slides:



Advertisements
Similar presentations
主讲教师 薛雁平 (大连一中 高级教师). 一、学习 内容 1 、分类计数原理与分步计数原理 2 、排列 3 、组合 4 、二项式定理 5 、随机事件的概率 6 、互斥事件有一个发生的概率 7 、相互独立事件同时发生的概率.
Advertisements

小结与复习( 4 ). 1 、内容小结 互斥事件互斥事件 不对立不对立 特点特点 ⑴ A 、 B 不能同时发生, A 发生必 然 B 不发生。 ⑵事件 A+B 是随机事件 概率概率 ,又若 A 1 , A 2 , … , A n 彼此互斥,则 对立对立 特点特点 ⑴ A 、 B 不能同时发生,但必有一.
概率统计( ZYH ) 1.3 古典概型与几何概型 一、古典概型 二、几何概型. 概率统计( ZYH ) 回忆 1.1 节的试验, E 1,E 3,E 4 有共同特性: 一、古典概型 ①(有限性)试验的样本空间 Ω 中仅含有限个样本点: ②(等可能性)每个基本事件 {ω i } 发生的可能性相同 :
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
概率论与数理统计 主讲:统计学院 任俊柏.
2.3.1条件概率.
第三章 概率 单元复习 第一课时.
古典概型习题课.
必修3第3章 概率全章复习.
2011年10月31日是一个令人警醒的日子,世界在10月31日迎来第70亿人口。当日凌晨,成为象征性的全球第70亿名成员之一的婴儿在菲律宾降生。 ?
专题1: 概率与统计解答题的解法.
第一节 预备知识 一、乘法原理 排列及组合 1、乘法原理 乘法原理:若完成一件事情要经过两个步骤,其中第一步中有 种不同的方法,第
教材版本:新教材人教版九年级(上) 作品名称:同类二次根式 主讲老师:张翀 所在单位:珠海市平沙第一中学.
3.1.3概率的基本性质.
3.1.3 概率的基本性质 事件 的关系 和运算 概率的 几个基 本性质 南海中学分校高一备课组.
3.1.3 概率的基本性质.
初级会计实务 第八章 产品成本核算 主讲人:杨菠.
互斥事件有一个发生的概率 格致中学 赵文清.
互斥事件有一发生的概率 瑞四中 林光明.
中考阅读 复习备考交流 西安铁一中分校 向连吾.
10.2 立方根.
中央广播电视大学开放教育 成本会计(补修)期末复习
樣本空間與事件 餘事件:不在A中的樣本所構成的事件,即A′.
人教版义务教育课程标准实验教科书 小学数学四年级上册第七单元《数学广角》 合理安排时间 248.
常用逻辑用语复习课 李娟.
25.2 用列举法求概率(第3课时) 保靖民中:张 强.
等可能条件下的概率(一) 有些事件的概率,如某批足球的质量情况、某种绿豆在相同条件下的发芽情况,是通过在大量重复进行的同一试验时,事件A发生的频率 会稳定地在某一个常数附近摆动, 这个常数就是事件A发生的概率. 通过大量的重复的实验,得到某个事件发生的频率,进而估计其发生的概率。这种方法费时、费力而且结果有一定的摆动性,有些实验还具有破坏性.
组 合 复习 引入 探求1 探求2 组合 练习1 例1 巩固1 巩固2 小结 作业 公式.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
中考语文积累 永宁县教研室 步正军 2015.9.
事件的独立性.
事件的独立性与独立试验概型.
条件概率 Conditional Probability
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
一、条件概率 许多情况下,我们会遇到在事件A发生的条件下求事件B的概率问题,我们把这个概率称为在事件A发生的条件下事件B的条件概率。记作:P(B/A); 相应地,P(B)称为无条件概率。 例如:老张有3个孩子,已知老大是女孩,求另外两个孩子也是女孩的概率(假设男孩、女孩出生率相同)。 解:记A={老大是女孩},B={三个孩子都是女孩}
余角、补角.
小学数学知识讲座 应用题.
初中数学 七年级(上册) 6.3 余角、补角、对顶角(1).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
倒装句之其他句式.
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
第 22 课 孙中山的民主追求 1 .近代变法救国主张的失败教训: “师夷之长技以制 夷”“中体西用”、兴办洋务、变法维新等的失败,使孙中山
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
课件制作:淮北矿业集团公司中学纪迎春 10.7相互独立事件同时发生的概率 授课教师:纪迎春.
实数与向量的积.
线段的有关计算.
相似三角形 石家庄市第十中学 刘静会 电话:
《概率论》总复习.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
全概率公式和贝叶斯公式主要用于计算比较复杂事件的概率, 它们实质上是加法公式和乘法公式的综合运用.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
1.2 子集、补集、全集习题课.
上杭二中 曾庆华 上杭二中 曾庆华 上杭二中 曾庆华.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
高中数学必修 平面向量的基本定理.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
美丽的旋转.
1.3 概率的定义及其运算 ? ? 从直观上来看,事件A的概率是指事件A发生的可能性 P(A)应具有何种性质?
找 因 数.
課程五 機率.
位似.
畢氏定理(百牛大祭)的故事 張美玲 製作 資料來源:探索數學的故事(凡異出版社).
第3讲 概率论初步 3.1 概率 条件概率和加法公式 3.3 计数原则.
102年人事預算編列說明 邁向頂尖大學辦公室製作.
《液体压强》复习课 一、知识复习 二、例题讲解.
Presentation transcript:

课件制作:淮北矿业集团公司中学纪迎春 10.7相互独立事件同时发生的概率 授课教师:纪迎春

一.新课引人 问题: 甲坛子里有3个白球,2个黑球,乙坛子里有2个白球,2个黑球,从这两个坛子里分别摸出1个球,它们都是白球的概率是多少? 把“从甲坛子里摸出1个球,得到白球”叫做事件A 把“从乙坛子里摸出 1个球,得到白球”叫做事件B 没有影响 甲 乙

事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件. 二.新课 1.独立事件的定义 事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件.

2.独立事件同时发生的概率 “从两个坛子里分别摸出1个球,都是白球”是一个事件,它的发生,就是事件A,B同时发生,我们将它记作A·B.想一想,上面两个相互独立事件A,B同时发生的概率P(A·B)是多少?

从甲坛子里摸出1个球,有 种等可能的结果;从乙坛子里摸出1个球,有 种等可能的结果.于是从两个坛子里各摸出1个球,共有 种等可能的结果. 5 4 5 × 4 同时摸出白球的结果有3×2种. (白,白)(白,白)(白,黑)(白,黑)   (白,白)(白,白)(白,黑)(白,黑)   (黑,白)(黑,白)(黑,黑)(黑,黑) 甲 乙

一般地,如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积, 这就是说,两个相互独立事件同时发生的概率,等于每个事件发生的概率的积.   一般地,如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率,等于每个事件发生的概率的积, 即 P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An). 如果A、B是两个相互独立的事件,那么1-P(A)•P(B)表示什么? 想一想? 即 表示相互独立事件A、B中 至少有一个不发生的概率

三.例题分析: 答:…… 例1 甲、乙2人各进行1次射击,如果2人击中目标的概率都是0.6, 计算: (1) 2人都击中目标的概率;   (1) 2人都击中目标的概率;   (2)其中恰有1人击中目标的概率;   (3)至少有1人击中目标的概率. 解:(1)记“甲射击1次,击中目标”为事件A,“乙射击1次,击中目标”为事件B.由于甲(或乙)是否击中,对乙(或甲)击中的概率是没有影响的,因此A与B是相互独立事件. 又“两人各射击1次,都击中目标”就是事件A·B发生,根据相互独立事件的概率乘法公式,得到: 答:…… P(A·B)=P(A)·P(B)=0.6×0.6=0.36.

例1 甲、乙2人各进行1次射击,如果2人击中目标的概率都是0.6, 计算:(2)其中恰有1人击中目标的概率; 答:……

答:…… 例1 甲、乙2人各进行1次射击,如果2人击中目标的概率都是0.6,计算:(3)至少有1人击中目标的概率. 解法2:两人都未击中目标的概率是 因此,至少有1人击中目标的概率 答:……

例2:制造一种零件,甲机床的正品率是0.9, 乙机床的正品率是0.95,从它们制造的产品中 各任抽一件,(1)两件都是正品的概率是多少 ?(2)恰有一件是正品的概率是多少? 解:设A=从甲机床制造的产品中任意抽出一件 是正品;B=从乙机床制造的产品中任意抽出一件是正品,则A与B是独立事件 ⑴P(A·B)=P(A)·P(B)=0.9×0.95=0.855 ⑵P(A· B)+P(A· B)=P(A) ·P(B)+P(A) ·P(B) =0.9×(1- 0.95)+(1 - 0.9) ×0.95 =0.14 另解:1 - P(A·B) -P(A·B)=1 - 0.855 - (1 - 0.95)· (1 - 0.9)=0.14 答:两件都是正品的概率是0.855恰有一件是正品概率是0.14

三.例题分析: 例3 在一段线路中并联着3个自动控制的常开开关,只要其中有1个开关能够闭合,线路就能正常工作.假定在某段时间内每个开关能够闭合的概率都是0.7,计算在这段时间内线路正常工作的概率.   分析:根据题意,这段时间内线路正常工作,就是指3个开关中至少有1个能够闭合,这可以包括恰有其中某1个开关闭合、恰有其中某2个开关闭合、恰好3个开关都闭合等几种互斥的情况,逐一求其概率较为麻烦,为此,我们转而先求3个开关都不能闭合的概率,从而求得其对立事件——3个开关中至少有1个能够闭合的概率. 解:分别记这段时间内开关JA,JB,JC能够闭合为事件A,B,C(如图).由题意,这段时间内3个开关是否能够闭合相互之间没有影响.根据相互独立事件的概率乘法公式,这段时间内3个开关都不能闭合的概率是

显然太烦 答:…… 还有什么做法? 于是这段时间内至少有1个开关能够闭合,从而使线路能正常工作的概率是 注 上面例1第(3)小题的解法2和例2的解法,都是解应用题的逆向思考方法.采用这种方法有时可使问题的解答变得简便. 还有什么做法? 显然太烦

例4:有甲、乙两批种子,发芽率分别是0.8和 0.7,在两批种子中各取一粒,A=由甲批中 取出一个能发芽的种子,B=由乙批中抽出一 个能发芽的种子,问⑴A、B两事件是否互斥 ?是否互相独立?⑵两粒种子都能发芽的概 率?⑶至少有一粒种子发芽的概率?⑷恰好 有一粒种子发芽的概率? 解:⑴A、B两事件不互斥,是互相独立事件 ⑵∵A·B=两粒种子都能发芽 ∴P(A·B)=P(A)·P(B) =0.8×0.7=0.56 ⑶1 – P(A· B)=1- P(A)·P(B)=1-(1-0.8)(1-0.7) =0.94 ⑷P(A· B)+P(A·B)=P(A)P(B)+P(A)P(B) =0.8(1-0.7)+(1-0.6)0.7=0.38

四.思考题: 1.一工人看管三台机床,在一小时内甲,乙,丙三台机床需工人照看的概率分别是0.9,0.8和0.85,求在一小时中, ①没有一台机床需要照看的概率; ②至少有一台机床不需要照看的概率; ③至多只有一台机床需要照看的概率. 2.从5双不同的鞋中任取4只,求这4只鞋中至少有两只能配成一双的概率. 3.将六个相同的元件接入电路,每个元件能正常工作的概率为0.8. 如图,三种接法哪种使电路不发生故障(有通路就算正常)的概率最大? 4.甲乙两人比赛射击,甲每次击中概率为0.6,乙每次击中概率为0.8.如果甲,乙都击中算平.如果甲乙都不中则射击继续进行;若甲中乙不中或乙中甲不中,比赛就停止.求甲得胜的概率.

互斥事件 相互独立事件 概念 符号 计算公式 如果事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件 . 不可能同时发生的两个事件叫做互斥事件. 互斥事件A、B中有一个发生,记作 A +B 相互独立事件A、B同时发生记作 A · B P(A+B)=P(A)+P(B) P(A·B)= P(A)·P(B)

21:47:22 请多提宝贵意见! 结束 再见! E-mail: jyc6819@sohu.com