复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)

Slides:



Advertisements
Similar presentations
第七章 空间解析几何与向量代数 1/26.
Advertisements

精品课程《解析几何》 第三章 平面与空间直线.
§3.4 空间直线的方程.
高等数学II 课程网页: 答疑时间:(周一10:00-12:00三教三楼答疑室)
第七章 空间解析几何与向量代数 用代数的方法研究几何问题称为解析几何 平面解析几何 一元微积分 空间解析几何 多元微积分 本章的主要内容 :
第七章 空间解析几何与向量代数 1、空间直角坐标系; 2、向量及其线性运算; 3、向量的坐标、数量积、向量积;
第七章 向量代数与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的坐标表示 第三节 向量的数量积和向量积 第四节 平面方程
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第七章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
空间解析几何与向量代数 第一节 向量及其线性运算 第二节 数量积 向量积 *混合积 第三节 曲面及其方程 第四节 空间曲线及其方程
第七章 向量与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的点积与叉积 第三节 平面与直线 结束.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
平面向量复习建议.
3.4 空间直线的方程.
第六章 向量代数与空间解析几何 第一节 向量及其线性运算 一、空间直角坐标系 二、向量与向量的线性运算 三、向量的坐标表示式
第八章 空间解析几何 与向量代数 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
解析几何 4.1.2圆的一般方程 邵东一中高1数学组 林真武.
氧气的制法 装置 原理 练习 随堂检测.
4.3 空间直角坐标系 空间直角坐标系 莆田二十八中 数学组.
大道至简:自主学习拿高分 丽水市教育教学研究院 朱德飞.
 第20讲 中国的交通.
第八章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
1.5 三角形全等的判定(4).
3.2.1 直线的方向向量 与平面的法向量.
12.3 角的平分线的性质 (第2课时).
双曲线的简单几何性质 杏坛中学 高二数学备课组.
一、平面的点位式方程 1 平面的方位向量 过空间中一点M与两个不共线的向量 ,可以唯一确定一个平面 ,则 向量 称为平面 的方位向量
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
新课标人教版课件系列 《高中数学》 选修2-1.
§1.1空间直角坐标系 一.空间直角坐标系 坐标原点; 坐标轴; 坐标平面。
空间向量的数量积运算.
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
线段的有关计算.
正方形 ——计成保.
第5课时 空间向量及其运算 要点·疑点·考点 课 前 热 身   能力·思维·方法   延伸·拓展 误 解 分 析.
2.6 直角三角形(二).
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
3.3 垂径定理 第2课时 垂径定理的逆定理.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.5空间向量运算的 坐标表示.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
夹角 曾伟波 江门江海中学.
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
直线和圆的位置关系 ·.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
二次函数(一) 讲师:韩春成 学而思初中数学教研主任 中考研究中心专家成员 学而思培优“卓越教师”.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
高中数学必修 平面向量的基本定理.
直线的倾斜角与斜率.
双曲线及其标准方程(1).
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
第一模块 向量代数与空间解析几何 第二节 向量及其坐标表示法 一、向量的概念 二、向量的坐标表示法.
9.9空间距离.
锐角三角函数(1) ——正 弦.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
3.1.5 空间向量运算的坐标表示.
3.2 立体几何中的向量方法 3.2 . 1 直线的方向向量与平面的法向量 1.了解如何用向量把空间的点、直线、平面表示来出.
用向量法推断 线面位置关系.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1) 以 建立空间直角坐标系O—xyz 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)

规定:

2.空间向量数量积的坐标表示: 设空间两个非零向量 已知 、 ,则 4.空间两点间的距离公式 注:此公式的几何意义是表示长方体的对角线的长度。 4.空间两点间的距离公式 已知      、     ,则

注意:(1)当 时, 同向; (2)当 时, 反向; (3)当 时, 。 思考:当 及 时, 的夹角在什么范围内? 注意:(1)当       时,   同向;   (2)当       时,   反向;   (3)当       时,   。 6.空间两非零向量垂直的条件 思考:当       及   时,    的夹角在什么范围内?

练习一: 1.求下列两点间的距离: 2.求下列两个向量的夹角的余弦:

例题: 例1 已知    、    ,求:  (1)线段  的中点坐标和长度;  解:设     是  的中点,则 ∴点 的坐标是     . 

(2)到   两点距离相等的点     的 坐标    满足的条件。 解:点    到   的距离相等,则 化简整理,得 即到   两点距离相等的点的坐标    满 足的条件是

例3 如图, 在正方体       中,         ,求  与  所成的角的余弦值.   解:设正方体的棱长为1,如图建 立空间直角坐标系    ,则     例3

例3答案

书P90 例5.在正方体 中,E、F分别是BB1,, CD中点,求证:D1F 平面ADE 证明:设正方体棱长为1, 为单位正交 证明:设正方体棱长为1, 为单位正交 基底,建立如图所示坐标系D-xyz,则可得: A1 x D1 B1 A D B C C1 y z E F 所以

例6.书本P88 例3 改用建立空间直角坐标系的方法如何证明。 z z B C C1 A1 B1 A M B C C1 A1 B1 A M y y x x

练习: z 建立空间直角坐标系来解题。 x y

时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。 1.基本知识: (1)向量的长度公式与两点间的距离公式; (2)两个向量的夹角公式。   2.思想方法:用向量计算或证明几何问题 时,可以先建立直角坐标系,然后把向量、点坐 标化,借助向量的直角坐标运算法则进行计算或 证明。 知识要点3