第三章 遗传的基本规律.

Slides:



Advertisements
Similar presentations
《遗传定律 》专题复习 ——“ 模型 ” 建构在解遗传题中的应用 温州中学 高三备课组. 真核生物的性状遗传。 有性生殖的生物性状遗传。 细胞核遗传。 分离定律 —— 一对相对性状的遗传。 自由组合定律 —— 位于非同源染色体上 (即独立遗传)的两对或两对以上相对性 状的遗传。包括位于常染色体上和性染色.
Advertisements

第三章 遗传的基本规律. 本章目录 第一节 分离规律 第二节 自由组合规律 第三节 连锁与互换定律.
第二课时 生物的性状与基因和染色体、 分析基因传递过程 苏科版生物新课标实验教材八下. 1 、生物的亲代与子代之间,在 、 和 等方面相似的现象叫做 。 2 、生物体形态结构、生理特征等称为生物体的 , 同种生物同一性状的不同表现形式叫做 。 你能举例吗 ? 形态 生理功能 结构 生物的遗传 相对性状.
第 二 章 基因和染色体的关系 第 一 节 减 数 分 裂 和 受 精 作 用 主讲:广州市玉岩中学 杨美玲.
第一节 分离定律 选用豌豆作为杂交实验材料的原因 1. 豌豆是自花授粉、闭花授粉的植物, 自然 状态下是纯种 2. 豌豆花较大, 便于人工去雄和授粉 3. 豌豆成熟后子粒留在豆荚中, 便于观察计 数 4. 豌豆具有多个稳定而易于区分的性状 自花授粉 : 同一朵花内完成传粉的过程. 闭花授粉 :
第三节 连锁遗传规律 一. 性状连锁遗传的表现 二. 连锁遗传的解释和连锁和交换 的遗传机理验证 三. 连锁遗传的验证 四. 连锁遗传规律的应用.
1 、军官:上校 A. 教师:教授 B. 警察:狱警 C. 工人:经理 D. 白酒:红酒 该题给出一对相关的词,请同学们在 备选答案中找出一对与之在逻辑关系上最 为贴近或相似的词。
(1) 提出了遗传单位是遗传因子 ( 现 代遗传学上确定为基因 ) ; 孟德尔( 1822—1884 ),奥国 人,遗传学的奠基人。 21 岁起做修 道士, 29 岁起进修自然科学和数学。 主要工作: 经过 8 年的杂 交试验, 1865 年发表了《植物杂交 试验》的论文。 (2)
第一章第二节 自由组合定律 高茎豌豆与短茎豌豆,F 1 都为高茎。 让 F 1 自交得 F 2, 则 F 2 表现型及其比例 _______________________ , 基因型及其比例为 __________________________ 。 高茎∶矮茎 = 3 ∶ 1 DD ∶ Dd.
一、 两对相对性状的遗传实验 × P F 1 个体数: : 3 : 3 : 1 黄色圆粒 绿色皱粒 F 2 黄色圆粒 绿色皱粒绿色圆粒 黄色皱粒 × 黄色圆粒.
自然条件下豌豆的传粉方式 实验材料 —— 豌豆 花粉 雄蕊雄蕊 雌蕊雌蕊 雌配 子 (含雄 配子) 自然条件下豌豆传 粉时花瓣的形态 ① 自花传粉、闭花授粉.
§1.2 孟德尔的豌豆杂交实验(二). 两对相对性状的遗传实验 对每一对相对性状单 独进行分析 圆粒( =423 ) 皱粒( =133 ) 黄色( =416 ) 绿色( =140 ) 其中 圆粒 : 皱粒接近 3 : 1 黄色:绿色接近 3 : 1.
第 2 节 自由组合定律. P × 黄色圆形 绿色皱形 × F1F1 F2F2 黄色 圆形 黄色 皱形 绿色 圆形 黄色 圆形 绿色 皱形 个体数 比数 9 ∶ 3 ∶ 3 ∶ 1 F 2 出现不同对性状之间的 自由组合,出现与亲本性 状不同的新类型。 现象: 单独分析每对相对性状.
人的性别遗传 制 作 襄城县库庄一中 李卫贞.
复 习 基 因 的 自 由 组 合 定 律 复习基因的自由组合定律.
aa AA Aa 1.生物的性状是由什么决定的? 2.染色体、DNA、基因之间的关系? 是由基因决定的。 3.基因有显性和隐性之分,
1、减数第一次分裂后期随着同源染色体的分离,同源染色体上的等位基因(A和a)也随之分离。 GO 没有减数分裂就没有遗传规律。
一对血型都为A型的恩爱夫妻,生了一个O型血的孩子。夫妻俩很纳闷,为何孩子的血型和他们俩都不一样呢?他们甚至怀疑过在医院分娩时,医生将孩子换错了。 性状:生物的形态、结构和生理生化等特征的总称。 相对性状:一种生物的同一种性状的不同表现形式。
基因的自由组合定律.
第2节 孟德尔的豌豆杂交实验(二).
孟德尔的豌豆杂交实验(一).
                                                                                       生物的遗传与变异.
第一章 遗传因子的发现.
减数分裂与生殖细胞的形成 复习课.
1.每种生物的体细胞中,染色体的数目是 的,并且通常是 的。
高中生物新课程复习课件系列精品 《遗传与进化》复习要点.
第 2 节 孟德尔的豌豆杂交实验(二).
黄色圆粒 × 绿色皱粒 黄色圆粒 (一) 两对相对性状的遗传实验 P F1 F2 黄色圆粒 绿色圆粒 黄色皱粒 绿色皱粒 比例
1.基因自由组合定律的适用条件 (1)有性生殖生物的性状遗传(细胞核遗传)。 (2)两对及两对以上相对性状遗传。 (3)控制两对或两对以上相对性状的等位基因位于不同对同 源染色体上。
自由组合定律中的 比例及概率计算 上杭二中 吴文丽.
第五章 连锁遗传和性连锁.
第三节 伴性遗传.
第六章 遗传和变异 1.植物叶肉细胞内遗传物质的载体不包括( ) A.染色体 B.质体 C.线粒体 D.核糖体
高二会考复习之—— 遗传定律. 高二会考复习之—— 遗传定律 复习要点: 一、相关知识 二、基因的分离定律和自由组合定律 三、孟德尔遗传规律的现代解释 四、遗传定律的常见题型 孟德尔成功的原因 遗传定律的适用范围 几个重要的概念 关于基因、性状的概念及关系.
§6.3 性别决定和伴性遗传. §6.3 性别决定和伴性遗传 人类染色体显微形态图 ♀ ♂ 它们是有丝分裂什么时期的照片? 在这两张图中能看得出它们的区别吗?
Chapter3 孟德尔遗传规律 本章要求 基本名词概念 3.1 分离定律 3.2 自由组合定律 3.3 数理统计原理在遗传研究中的应用
第三节 基因的显性和隐性.
高三生物第一轮复习 高三备课组(2011届) 必修二 第二章 第一、二节 减数分裂和染色体学说.
生 物 的 变 异.
减数分裂 制作:乌海市第十中学 史姝婉.
第2节 基因在染色体上.
讨论: 1.分离定律适用于几对基因控制着的几对相对性状? 2.一对相对性状中如何确定显隐性的关系?
欢迎光临指导.
【中学生物相关资料】.
基 因 的 分 离 定 律 2002年4月.
第2课时 基因的分离定律. 第2课时 基因的分离定律 重习要点 ◆ 一对相对性状的基因型种类 及概率的计算 ◆ 一对相对性状遗传系谱求法及图的判断 ◆ 如何实验验证某性状是由一对基因控制 ◆ 一对相对性状的基因型种类 及概率的计算 ◆ 一对相对性状遗传系谱求法及图的判断 ◆ 如何实验验证某性状是由一对基因控制.
基 因 的 分 离 规 律.
第七单元第二章 第三节 基因的显性和隐性.
第四章生物的遗传和变异复习.
第二节 遗传的基本规律 一、基因的分离定律.
拇指竖起时弯曲情形 1、挺直2、拇指向指背面弯曲 食指长短 1、食指比无名指长 2、食指比无名指短 双手手指嵌合
第二节  遗传的基本规律 一、孟德尔及其豌豆杂交试验
第2、3节 基因在染色体上、伴性遗传.
勤学精思 好问多练 一轮复习之 遗传、变异与基因工程 课时二、遗传的基本规律.
专题13 孟德尔定律.
《遗传学》 丽江师范高等专科学校 生命科学系 王石华 博士/教授
第五章 遗传的基本定律及其扩展 第一节 分离定律 一、一对相对性状的杂交试验 (一)豌豆杂交试验
一、基因分离定律的实质 位于一对同源染色体上的等位基因,具有 一定的独立性,生物体在进行减数分裂形成配
基于高中生物学理性思维培养的实践性课例开发
第二章 Mendel 定律 第一节分离规律 一 一对相对性状的遗传 二 分离规律的解释 三 分离规律的验证
基于高中生物学理性思维培养的实践性课例开发
  第二章 孟德尔定律 重点:分离定律和自由组合定律的遗传 学分析; 用棋盘法和分枝法计算遗传比 率; 用卡方检验测验适合度。 难点:用棋盘法和分枝法计算遗传比 率;
第二章 孟德尔规律.
Chapter 4 Mendelian Inheritance
基因信息的传递.
第1章 遗传因子的发现 第1节 孟德尔的豌豆杂交实验(一)
细胞分裂 有丝分裂.
自由组合定律的实质 塘下中学 谢思隆 2015届高考二轮小专题复习 考纲要求 2—1 孟德尔定律 (1)孟德尔遗传实验的科学方法
一个品种的奶牛产奶多,另一个品种的奶牛生长快,要想培育出既产奶多,又生长快的奶牛,可以采用什么方法?
五.有丝分裂分离和重组 (一) 有丝分裂重组(mitotic recombination) 1936 Curt Stern 发现
Presentation transcript:

第三章 遗传的基本规律

本章目录 第一节 分离规律 第二节 自由组合规律 第三节 连锁与互换定律

第一节 分离规律

生物通过生殖产生子代,其实,亲代与子代之间并没有传递现成性状的现象,而是将其遗传物质传递给了子代,遗传物质得以表达就成为后代的性状。来自于两个亲代的遗传物质又各不相同,所以就表现出复杂的遗传现象。 较早利用杂交实验方法来研究生物遗传性状的是奥地利学者孟德尔(G.Mendel1822~1884年)。他用豌豆作科学实验,第一次肯定了生物性状是通过遗传因子(现称为基因)传递的,并发现基因在世代相传中的遗传规律,他敏锐的洞察力和执著的追求终于揭示出遗传的基本法则,从而给遗传学研究奠定了科学基础。

孟德尔为什么选豌豆为试验材料呢?因为豌豆具有以下优点,利用豌豆作为实验材料,就必须对豌豆进行人工授粉,为了后续课程的学习,需要学习者有所了解,其图示过程如下。

一、孟德尔的豌豆杂交实验 花的颜色: 紫色/白色 种子性状: 圆形/皱缩 种子颜色: 黄色/绿色 花着生位置: 腋生/顶生 豌豆是闭花授粉植物,在自然条件下,每种性状都是纯种。孟德尔分别选用了七对不同性状的豌豆品种进行杂交实验,观察这些相对性状在杂交后代中的传递规律。这七对相对性状是: 花的颜色:    紫色/白色 种子性状:    圆形/皱缩    种子颜色:   黄色/绿色 花着生位置:  腋生/顶生      豆荚形状:    饱满/皱缩      豆荚颜色:    绿色/黄色 植株高度:   高/矮

每对性状之间,都互为相对性状,彼此分明,没有中间性状。所谓相对性状就是指同一性状的不同类型。孟德尔把具有相对性状的纯种开紫花的植株和纯种开白花的植株杂交,不论用哪一种做父本或母本,其子1代(F1代)全开紫花。这种在杂合子中所表现出的亲本性状称为显性性状,如花的紫色;不表现出来的性状称为隐性性状,如花的白色。

第二年,用子1代的杂种植株播种生长。并让它们自交(闭花授粉),所产生的子2代(F2代)共929株。孟德尔用统计学方法处理杂交实验结果,发现有705株开紫花,224株开白花,按紫花与白花数目的比例来看是3.15:1.00,约为3:l的比例。这种在杂种后代中出现不同性状的现象,称为性状分离。 孟德尔按上述方法继续对7对相对性状分别进行杂交实验,统计了子二代植株显性与隐性性状之间的比例,结果都十分相似,总体上都体现了3:1的比例,这是一个很有规律性的现象。

 二、对分离现象的解释 在本实验中,如以R代表花的紫色基因,r代表花的白色基因。那么,亲代紫花的细胞中含基因RR,白花细胞中含基因rr,在生殖细胞形成过程中,成对基因彼此分离,结果紫花全是含R基因的生殖细胞,白花全是含r基因的生殖细胞。受精后,受精卵又具有成对的基因Rr。由于紫色基因R对白色基因r为显性,所以子1代全开紫花。子l代形成生殖细胞时,R基因与r基因相互分离,一半含R基因,一半含r基因,这样,受精后子2代将有三种基因组合形式(RR、Rr、rr),由于基因R对基因r为显性,所以子2代中紫花和白花的比例为3:1。

上述紫色或白色这些能够用肉眼观察到的性状称表型,与表型有关的基因组成称基因型。亲代的基因型RR或rr,由于同对基因彼此相同,称为纯合子;子1代的基因型为Rr,同对基因彼此不同,称为杂合子。在杂合子中,基因R和基因r的作用是不同的,能够控制显性性状的基因称为显性基因,控制隐性性状的基因称为隐性基因。基因一般用英文字母表示,显性基因用大写字母如R,隐性基因用小写字母如r。那么等位基因是指在同源染色体的某一位点上所具有的不同形式的基因,如基因A与基因a,它们影响着同一相对性状的形成。

三、对分离实验结果的验证 为了验证子1代细胞中确实存在一对等位基因Rr,并且,这一对等位基因在减数分裂中真的彼此分离,分别进入到不同的生殖细胞中去,孟德尔设计了著名的测交试验。 测交就是让杂种个体与隐性纯合类型杂交,用以测定杂种基因组合的方法。子1代杂合子Rr,在形成生殖细胞时,R基因和r基因彼此分离,形成两类数量相等的生殖细胞,而隐性亲本则只形成一种含r的生殖细胞,随机受精后将形成基因型为Rr、rr数量相等的受精卵,将来分别开出紫花和白花,约成l:1的比例。测交结果与预期的设想完全一致,说明实验是正确的。

 四、基因的分离定律 综上所述,可得出如下结论:在杂合子细胞中,位于一对同源染色体相同位置上的一对等位基因,各白独立存在,互不影响。在形成生殖细胞时,等位基因随同源染色体的分开而分离,分别进入不同的生殖细胞。这就是分离定律,也称为孟德尔第一定律。减数分裂中同源染色体的分离是分离定律的细胞学基础。分离定律的实质是等位基因的分离。

第二节 自由组合规律

孟德尔在研究一对相状性状的遗传时总结出了分离定律,在此基础上,他又进一步研究两对或两对以上相对性状的遗传,提出了基因的自由组合定律。  一、两对相对性状的豌豆杂交实验 孟德尔选择了这样两个亲本进行杂交: 一个是双显性亲本:种子是圆形的,种子的颜色为黄色; 一个是双隐性亲本:种子是皱缩的,种子的颜色为绿色。 杂交结果,无论谁做父本或母本,子一代都是黄色圆滑的种子。子一代植株闭花授粉,所结的子二代556粒种子,有四种表型:黄色圆滑(315粒)、黄色皱缩(101粒)、绿色圆滑(108粒)、绿色皱缩(32粒),它们在数量上的比例约为9:3:3:l。

在子1代中,从种子的颜色来看全为黄色,没有绿色,说明黄色为显性,用Y表示,绿色为隐性,用y表示。从种子的形状来看全为圆滑的,没有皱缩的,说明圆滑为显性,用R表示,皱缩为隐性,用r表示。这样,子1代的基因型是YyRr。在子2代中黄和绿仍成3:1的比例,圆和皱也成3:1的比例,说明都受分离定律的制约。同时除原来的亲本类型黄圆和绿皱之外,还出现了亲本所没有的类型黄皱和绿圆。各类型之间有一定的比例,即为9:3:3:1。

二、孟德尔的假设与验证 为了说明上述实验结果,孟德尔作了这样的假设:亲本黄圆的基因型是YYRR,产生一种基因型YR的生殖细胞;亲本绿皱的基因型是yyrr,也产生一种基因型yr的生殖细胞。受精后F1的基因型是YyRr,表现为黄圆。F1形成生殖细胞时,每对等位基因分离,不同对的基因可以自由组合形成四种数量相等的生殖细胞:YR、Yr、yR、yr,其比例是1:1:1:1。随机受精后F2有9种基因型,4种表型,表型成9:3:3:l的比例。由图可以看出,一对性状的分离与另一对性状的分离是相互独立的。在其后代中,这些性状之间又是可以自由组合的。

为了验证自由组合假设的真实性,孟德尔用杂种子1代和绿皱亲代进行测交。根据自由组合假说,杂种子1代(YyRr)形成生殖细胞时,将产生四种数量相等的生殖细胞:YR、Yr、yR、yr,绿皱亲代只产生一种生殖细胞yr。随机受精后,将形成YyRr、Yyrr、yyRr、yyrr四种基因型的子代,而且数量相等。故从表型上看,黄圆、黄皱、绿圆、绿皱约呈1:1:1:1的比例。实验结果正如预期的那样,完全证实了自由组合假说。

三、孟德尔的自由组合定律 孟德尔由此提出了自由组合定律:位于非同源染色体上两对或两对以上的基因,在形成生殖细胞时,同源染色体上的等位基因彼此分离,非同源染色体上的基因自由组合,分别形成不同基因型的生殖细胞。这就是孟德尔的第二定律。 现代分子生物学对染色体上基因定位的研究证明,豌豆有7对染色体,控制黄、绿(Yy)的等位基因在第1对同源染色体上,控制圆、皱(Rr)的等位基因位于第7对同源染色体上。孟德尔的自由组合定律适用于非同源染色体上两对或两对以上基因控制的性状遗传。故在减数分裂中,非同源染色体的自由组合是自由组合定律的细胞学基础。自由组合定律的实质是非等位基因的自由组合。

第三节 连锁与互换定律

摩尔根(Morgan 1866年~1945年)是美国的生物学家与遗传学家,他发现了染色体的遗传机制,创立了染色体遗传理论,是现代实验生物学奠基人。摩尔根青年时在Kentucky州立学院接受教育。后在Johns Hopkins学院研究胚胎学,并获得博士。1933年,由于他的杰出成就获得了诺贝尔生理医学奖。      1911年摩尔根和他的学生以果蝇为实验材料,在大量杂交实验的基础上,提出了连锁与互换定律:当两对不同的基因位于一对同源染色体上时他们并不自由组合,而是联合传递,称为连锁。同源染色体上的连锁基因之间,由于发生了交换,必将形成新的连锁关系,称互换或重组。

一、完全连锁(连锁定律) 野生果蝇为灰身长翅类型,在实验饲养中出现黑身残翅的突变类型。灰身(B)对黑身(b)是显性,长翅(V)对残翅(v)是显性。灰身长翅(BBVV)和黑身残翅(bbvv)的果蝇杂交,子1代是灰身长翅的杂合子(BvVv)。用子1代雄果蝇和黑身残翅的雌果蝇测交,按自由组合定律预测,子1代雄果蝇将产生BV、bV、Bv、bv四种数量相等的精子,雌果蝇只产生一种bv卵子,受精后,将产生灰身长翅(BbVv)、灰身残翅(Bbvv)、黑身长翅(bbVv)和黑身残翅(bbvv)四种类型的果蝇,而且呈1:l:1:1的比例。实验结果并非如此,而是只有灰身长翅(BbVv)和黑身残翅(bbvv)两种类型,呈1:1的比例。

摩尔根假定:基因B和V同在一条染色体上,基因b和v同在另一条染色体上。在精子形成过程中,由于同源染色体彼此分离,含有B和V的染色体与含有b和v的染色体各自分离到两个子细胞中去,这两种精子分别与卵细胞受精后,其后代只能是灰身长翅(BbVv)和黑身残翅(bbvv)两种类型。这种遗传方式有别于自由组合定律。 这种两对或两对以上等位基因位于一对同源染色体上,在遗传时,位于一条染色体上的基因常连在一起不相分离,叫连锁。这种果蝇测交后代完全是亲本组合的现象,称为完全连锁。

二、不完全连锁(互换定律) 摩尔根用子1代雌果蝇和黑身残翅的雄果蝇测交,后代又产生了四种类型:灰身长翅、灰身残翅、黑身长翅、黑身残翅,但不像自由组合定律那样呈l:1:1:1的比例,而是大部分(83%)为亲本组合类型,少部分(17%)为重新组合类型。 摩尔根认为:在子1代雌果蝇产生卵子时,基因B和V连锁在一条染色体上,基因b和v连锁在另一条染色体上,由于同源染色体非姐妹染色单体发生互换,产生了四种类型的卵子,与精子受精后,就形成了四种类型的后代。 由于互换发生基因重组,使一些基因不是总与另一些基因连锁在一起,这就是不完全连锁。

在减数分裂过程中,同源染色体之间可以发生局部交换,使原来的连锁基因发生了互换,结果出现了同源染色体上基因的重新排列,称互换。 同源染色体的联会和交叉是互换定律的细胞学基础。互换定律的实质是非姐妹染色单体间发生交换而产生的基因重排。 大量的实验资料表明,连锁与互换是生物界普遍存在的现象。因此,这一定律在实践中被广泛应用。