用列举法求概率 (第二课时).

Slides:



Advertisements
Similar presentations
质数和合数 中心小学 顾禹 人教版小学五年级数学下册 一、激趣导入 提示:密码是一个三位 数,它既是一个偶数, 又是 5 的倍数;最高位是 9 的最大因数;中间一位 是最小的质数。你能打 开密码锁吗?
Advertisements

因数与倍数 2 、 5 的倍数的特征
3 的倍数特征 抢三十

3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
因数与倍数 2 、 5 的倍数的特征 绿色圃中小学教育网 扶余市蔡家沟镇中心小学 雷可心.
2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
小结与复习( 4 ). 1 、内容小结 互斥事件互斥事件 不对立不对立 特点特点 ⑴ A 、 B 不能同时发生, A 发生必 然 B 不发生。 ⑵事件 A+B 是随机事件 概率概率 ,又若 A 1 , A 2 , … , A n 彼此互斥,则 对立对立 特点特点 ⑴ A 、 B 不能同时发生,但必有一.
古典概型习题课. 1 .古典概型 (1) 基本事件的特点 ①任何两个基本事件是 的. ②任何事件 ( 除不可能事件 ) 都可以表示成的和. 2 .古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1) 试验中所有可能出现的基本事件 . (2) 每个基本事件出现的可能性 . 互斥.
冀教版四年级数学上册 本节课我们主要来学习 2 、 3 、 5 的倍数特征,同学们要注意观察 和总结规律,掌握 2 、 3 、 5 的倍 数分别有什么特点,并且能够按 要求找出符合条件的数。
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
数学北师大版第六册第一单元 3.50 元是 …… 3元5角3元5角 像 3.05 、 1.06 、 , …… 这样的数,叫做小数。 读作:十六点八五 …… 小数点 读作: 一点零六 读作: 三点零五 读作: 零点八零 小数和我们以前学习的整数有什么不同.
概率的定义是什么? 一般的,在大量重复试验中,如果事件A发生的频率m/n会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability),记为P(A)=p 0≤P(A) ≤1. 必然事件的概率是1,不可能事件的概率是0.
欢迎同学们步入数学的殿堂,探究数学的奥妙!
用列举法求概率(1).
高二数学 选修 条件概率(一).
初中数学 九年级(上册) 4.2 等可能条件下的概率(一)(2).
古典概型习题课.
计算可能性大小 清华园学校:张伟丽.
教材版本:新教材人教版九年级(上) 作品名称:同类二次根式 主讲老师:张翀 所在单位:珠海市平沙第一中学.
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
10.2 立方根.
25.2 用列举法求概率(3).
25.2 用列举法求概率(第3课时) 保靖民中:张 强.
25.2 用列举法求概率(第1课时) 曲沟镇第二初级中学:王艳利.
12.1 等可能性 王林中学:娄艳秋.
事件的概率 画树形图求概率 育秀实验学校 李爱贤.
31.4. 用列举法求简单事件的概率.
概率及其计算 本课内容 4.2 ——4.2.2 用列举法求概率.
第六章 概率初步.
摸球游戏: 盒子里装有黄球和白球,我和你们依次摸球,摸到球后放回去,摇一摇,继续摸。摸到黄球老师赢,摸到白球你们赢,赢者得福娃一个。
求等可能性事件的概率----列举法,用列举法求概率的基本步骤.
第二十五章 概率初步 用列举法求概率(1).
初中数学 九年级(上册) 4.1 等可能性.
守株待兔——概率 七年级 数学 王玉英.
等可能条件下的概率(一) 有些事件的概率,如某批足球的质量情况、某种绿豆在相同条件下的发芽情况,是通过在大量重复进行的同一试验时,事件A发生的频率 会稳定地在某一个常数附近摆动, 这个常数就是事件A发生的概率. 通过大量的重复的实验,得到某个事件发生的频率,进而估计其发生的概率。这种方法费时、费力而且结果有一定的摆动性,有些实验还具有破坏性.
随机事件的概率及意义.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
高二数学 选修 离散型随机变量 安阳市实验中学 李志敏.
随机变量及其 概率分布.
人教新课标版五年级数学上册 可能性.
余角、补角.
问:图中∠α与∠β的度数之间有怎样的关系?
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
同学们好! 肖溪镇竹山小学校 张齐敏.
第六章 概率初步 6.2 频率的稳定性.
第四单元:可能性 可能性 武汉市洪山区武南小学 车 丹.
第七单元 小数的初步认识 简单的小数加、减法 安徽省黄山市黟县碧阳小学 叶群芳.
概率论 Probability.
3.2.1 古典概型 高二数学组.
绿色圃中小学教育网 比例 比例的意义 绿色圃中小学教育网
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
第四章 四边形性质探索 第五节 梯形(第二课时)
第五单元 6~10的认识和加减法 6、7的加减法练习课 北京市宣武师范附属第一小学 黄 磊.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
八年级 下册 16.1 二次根式(2) 湖北省通山县教育局教研室 袁观六.
人教版小学数学三年级上册 认识几分之几 gjq.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
多层循环 Private Sub Command1_Click() Dim i As Integer, j As Integer
任选四个不同的数字,组成一个最大的数和一个最小的数。用最大的数减去最小的数。用所得结果的四位数重复上述过程,最多七步,必得6174
两位数加两位数(进位) 刘晓玲
找 因 数.
3.4 角的比较.
1.4.1正弦函数、余弦函数的图象.
第3讲 概率论初步 3.1 概率 条件概率和加法公式 3.3 计数原则.
苏教版五年级数学 上册 简便算法 高效课堂编写组 王合立.
第八单元 20以内的进位加法 5、4、3、2加几 练习课 北京小学 杨 燕.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
9.3多项式乘多项式.
Presentation transcript:

用列举法求概率 (第二课时)

复习回顾: 一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含在其中的m种结果,那么事件A发生的概率为: 求概率的步骤: (1)列举出一次试验中的所有结果(n个); (2)找出其中事件A发生的结果(m个); (3)运用公式求事件A的概率:

为了不重不漏地列出所有这些结果,你有什么好办法么? 引例1:掷两枚硬币,求下列事件的概率: (1)两枚硬币全部正面朝上; (2)两枚硬币全部反面朝上; (3)一枚硬币正面朝上,一枚硬币反面朝上; “掷两枚硬币”共有几种结果? 正正 正反 反正 反反 为了不重不漏地列出所有这些结果,你有什么好办法么?

正 反 正 反 正正 正反 反正 反反 掷两枚硬币,不妨设其中一枚为A,另一枚设为B,用列表法列举所有可能出现的结果: B 你还能用其它方法列举所有结果吗?

引例2 掷一枚质地均匀的骰子有几种可能? 思考:掷两枚质地均匀的骰子有几种可能?

用列举法求概率 1 2 3 4 5 6 解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。 同时掷两个质地均匀的骰子,计算下列事件的概率: (1)两个骰子的点数相同 (2)两个骰子的点数之和是9 (3)至少有一个骰子的点数为2 解:由列表得,同时掷两个骰子,可能出现的结果有36个,它们出现的可能性相等。 (1)满足两个骰子的点数相同(记为事件A)的结果有6个,则 P(A)= = (2)满足两个骰子的点数之和是9(记为事件B)的结果有4个,则 P(B)= = (3)满足至少有一个骰子的点数为2(记为事件C)的结果有11个,则 P(C)= 第 一 个 二 1 2 3 4 5 6 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6)

归纳 “列表法”的意义: 当试验涉及两个因素(例如两个转盘),并且可能出现的结果数目较多时,为了不重不漏地列出所有可能出现的结果,通常采用“列表法”。

思考 归纳 “同时掷两个质地相同的骰子”与 “把一个骰子掷两次”,所得到的结果有变化吗? “同时掷两个质地相同的骰子” 两个骰子各出现的点数为1~6点 “把一个骰子掷两次” 两次骰子各出现的点数仍为1~6点 归纳 随机事件“同时”与“先后”的关系: “两个相同的随机事件同时发生”与 “一个随机事件先后两次发生”的结果是一样的。

用列举法求概率 练习一(课本137页) 在6张卡片上分别写有1-6的整数,随机地抽取一张后放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少? 第 一 张 二 1 2 3 4 5 6 (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) 解:由列表得,两次抽取卡片后,可能出现的结果有36个,它们出现的可能性相等. 满足第一次取出的数字能够整除第二次取出的数字(记为事件A)的结果有14个,则 P(A)= =

练习2:(课本第138页第3题):一个袋子中装有4个完全相同的小球,把它们分别标号为1,2,3,4,随机地摸出一个球然后放回,再随机地摸出一个球,请你计算下列事件的概率概率; (1):两次取的小球的标号相同; (2):两次取的小球的标号的和等于4.

用列举法求概率 这节课我们学习了哪些内容? 通过学习你有什么收获?

作业布置 1:课本第138页第5,7题 2: 《名师测控》列举法求概率二