浙教版初中数学九年级(上) “4.6图形的位似” 教学设计.

Slides:



Advertisements
Similar presentations
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
Advertisements

平行四边形的判定 新海实验中学苍梧校区 王欣.
浙教版九(上)§第四章 4.6相似多边形
初中数学 七年级(上册) 6.3 余角、补角、对顶角(1).
七 年 级 数 学 第二学期 (苏 科 版) 复习 三角形.
直线和圆的位置关系.
八年级下数学课题学习 格点多边形的面积计算 数格点 算面积.
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
同学们好! 肖溪镇竹山小学校 张齐敏.
第一学期课件 相似三角形性质 阳江学校 毛素云.
19.3 梯形(第1课时) 等腰梯形.
浙教版初中数学九年级(上) 4.6 图形的位似 初中数学资源网 龙港九中数学组.
4.6 图形的位似.
第二十七章 相似 位似图形的概念、性质与画法
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
新课导入 这种相似有什么特征? 相似图形.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
本节内容 平行线的性质 4.3.
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
1.1特殊的平行四边形 1.1菱形.
28.1 锐角三角函数(2) ——余弦、正切.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
第二十七章 相 似 27.2 相似三角形 相似三角形的性质.
浙教版初中数学九年级(上) “4.6图形的位似” 教学设计 初中数学资源网.
第24章 图形的相似 §24.5 画相似图形 位似变换.
27.3 位 似.
第3课时 两边成比例且夹角相等的两个三角形相似
实数与向量的积.
线段的有关计算.
正方形 ——计成保.
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
相似三角形 石家庄市第十中学 刘静会 电话:
3.2 勾股定理的逆定理.
第四章 四边形性质探索 第五节 梯形(第二课时)
27.3 位 似
北师大版八年级(上) 第五章 位置的确定 5.2 平面直角坐标系(3).
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
4.2 证明⑶.
3.3 垂径定理 第2课时 垂径定理的逆定理.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
27.3位似.
用计算器开方.
冀教版八年级下册 22、2平行四边形的判定(2) 东城中学 孙雅力.
数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。      ——毕达哥拉斯
九年级 上册 27.3 位似(第1课时).
北师大版五年级数学下册 分数乘法(一).
欢迎各位老师莅临指导! 海南华侨中学 叶 敏.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
13.3 等腰三角形 (第3课时).
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
义务教育课程标准实 验教科书北师大版 数学 图形的位似 青铜峡市回民中学 李德鸿.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
高中数学必修 平面向量的基本定理.
直线的倾斜角与斜率.
4.6 图形的位似     观察思考:这两幅图片有什么特征? 都是有好几张相似图形组成,每个对应顶点都经过一点.
平行四边形的面积.
1.2轴对称的性质 八 年 级 数 学 备 课 组.
位似.
苏教版三年级数学 上册 轴对称 高效课堂编写组 高向玲.
5.1 相交线 (5.1.2 垂线).
正方形的性质.
第三章 图形的平移与旋转.
3.3.2 两点间的距离 山东省临沂第一中学.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
Presentation transcript:

浙教版初中数学九年级(上) “4.6图形的位似” 教学设计

教材分析 教材的地位和作用   “4.6图形的位似”是浙教版九年级(上)第四章的内容,是相似形的延伸和深化。位似图形在实际生产和生活中有着广泛的应用,如利用位似把图形放大或缩小;放电影时,胶片与屏幕的画面也是位似图形。从教材编排的一些素材看,不仅丰富了教材的内容,加强了数学与自然、社会及其他学科的联系,同时体现了学生的数学学习内容是现实的、有意义的、富有挑战性的,更突出地反映了数学的价值。因此,本节教材对形成良好的数学思维习惯和应用意识,提高解决问题的能力,感受数学创造的乐趣,增进学好数学的信心,具有积极促进的作用。

教材分析 教学内容的确定   新课标的理念,数学教育要面向全体学生,人人都能获得必需的数学。4.6图形的位似,作为新增的内容,以其丰富的社会背景为素材展示给我们,使我们感受到数学创造的乐趣,但它对后续学习的知识联系不是很大,所以我认为,本节课的教学内容应以教材的编排为准,概念、性质、应用等让学生容易接受就好,水到渠成,不必要拓展和深化,按教材编排,“4.6图形的位似”为1课时完成。用“观察——验证——推理和交流”的方法,培养学生主动探求知识的精神和思维的条理性。

教材分析 教学目标 1.理解图形的位似概念,掌握位似图形的性质。 2.会利用作位似图形的方法把一个图形进行放大或缩小。   1.理解图形的位似概念,掌握位似图形的性质。   2.会利用作位似图形的方法把一个图形进行放大或缩小。   3.掌握直角坐标系中图形的位似变化与对应点坐标变化的规律。   4.经历位似图形性质的探索过程,进一步发展学生的探究、交流能力、以及动手、动脑、手脑和谐一致的习惯。   5.利用图形的位似解决一些简单的实际问题,并在此过程中培养学生的数学应用意识,进一步培养学生动手操作的良好习惯。   6.发展学生的合情推理能力和初步的逻辑推理能力。

教材分析 教学重点和难点 本节教学的重点是图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。   本节教学的重点是图形的位似概念、位似图形的性质及利用位似把一个图形放大或缩小。   直角坐标系中图形的位似变化与对应点坐标的关系,因为它涉及到数形结合、分类讨论的数学思想等一些学生的数学薄弱环节,所以是本节教学的难点。

教法   力求呈现“问题情境――建立数学概念――解释、应用 与拓展”的模式。结合本节课内容和学生的实际水平,可采用“观察——验证——推理和交流”的教学方法。   考虑到如何更直观、形象地突破教学重、难点,增大课堂容量,提高课堂效率,采用了多媒体辅助教学。

学法   叶圣陶说“教是为了不教”,也就是我们传授给学生的不只是知识内容,更重要的是指导学生一些数学的学习方法。在学习图形的位似概念过程中,让学生用类比的方法认识事物总是互相联系的,温故而知新。而通过“位似图形的性质”的探索,让学生认识事物的结论必须通过大胆猜测、判断和归纳。   在分析理解位似图形性质时,加强师生的双边活动,提高学生分析问题、解决问题的能力。通过例题、练习,让学生总结解决问题的方法,以培养学生良好的学习习惯。

教学过程 创设情景,构建新知 1.位似图形的概念 下列两幅图有什么共同特点?  下列两幅图有什么共同特点?   如果两个图形不仅形状相同,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心.

教学过程 创设情景,构建新知 2、引导学生观察位似图形  下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征? 显然,位似图形是相似图形的特殊情形,其相似比又叫做它们的位似比.

练一练:判断下列各对图形哪些是位似图形,哪些不是. (1)五边形ABCDE与五边形A′B′C′D′E′; (2)在平行四边形ABCD中,△ABO与△CDO

练一练:判断下列各对图形哪些是位似图形,哪些不是. (3)正方形ABCD与正方形A′B′C′D′. (4)等边三角形ABC与等边三角形A′B′C′

练一练:判断下列各对图形哪些是位似图形,哪些不是. (6)曲边三角形ABC与曲边三角形A′B′C′

练一练:判断下列各对图形哪些是位似图形,哪些不是. (7)扇形ABC与扇形A′B′C′, (B、A 、B′在一条直线上,C、A 、C′在一条直线上) (8)△ABC与△ADE(①DE∥BC; ②∠AED=∠B)

2.如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比.

适当提高,应用新知 位似图形的性质 一般地,位似图形有以下性质: 位似图形上任意一对对应点到位似中心的距离之比等于位似比.

作位似图形 例: 如图,请以坐标原点O为位似中心,作的位似图形,并把的边长放大3倍.

直角坐标系中图形的位似变化与对应点坐标变化的规律 想一想: 1.四边形GCEF与四边形G′C′E′F′具有怎样的对称性? 2.怎样运用像与原像对应点的坐标关系,画出以原点为位似中心的位似图形? 以坐标原点为位似中心的位似变换有一下性质: 若原图形上点的坐标为(x,y),像与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(―kx,―ky).

练一练   1.如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长缩小到原来的一半.

练一练

小结内容,自我反馈 今天你学会了什么? 位似图形的定义,位似图形的性质.