3.1.5 空间向量运算的坐标表示.

Slides:



Advertisements
Similar presentations
精品课程《解析几何》 第三章 平面与空间直线.
Advertisements

§3.4 空间直线的方程.
第七章 空间解析几何与向量代数 用代数的方法研究几何问题称为解析几何 平面解析几何 一元微积分 空间解析几何 多元微积分 本章的主要内容 :
第七章 空间解析几何与向量代数 1、空间直角坐标系; 2、向量及其线性运算; 3、向量的坐标、数量积、向量积;
第七章 向量代数与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的坐标表示 第三节 向量的数量积和向量积 第四节 平面方程
高中数学 必修  空间直角坐标系 南京市第十四中学.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
第七章 空间解析几何与向量代数 第一部分 向量代数 第二部分 空间解析几何 在三维空间中: 空间形式 — 点, 线, 面 数量关系 —
第七章 向量与空间解析几何 第一节 空间直角坐标系与向量的概念 第二节 向量的点积与叉积 第三节 平面与直线 结束.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
3.4 空间直线的方程.
第六章 向量代数与空间解析几何 第一节 向量及其线性运算 一、空间直角坐标系 二、向量与向量的线性运算 三、向量的坐标表示式
空间直角坐标系 这一章,我们为学习多元函数微积分学作准备,介绍空间解析几何和向量代数。这是两部分相互关联的内容。用代数的方法研究空间图形就是空间解析几何,它是平面解析几何的推广。向量代数则是研究空间解析几何的有力工具。这部分内容在自然科学和工程技术领域中有着十分广泛的应用,同时也是一种很重要的数学工具。
4.3 空间直角坐标系 空间直角坐标系 莆田二十八中 数学组.
相似三角形专题复习 ----几个常用基本图形的应用
3.2.1 直线的方向向量 与平面的法向量.
第6课时 空间向量在立体几何中的应用 要点·疑点·考点 课 前 热 身   能力·思维·方法   延伸·拓展 误 解 分 析.
2.3.2 抛物线的简单几何性质.
双曲线的简单几何性质 杏坛中学 高二数学备课组.
本节内容 平行线的性质 4.3.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
3.2.2 用向量方法求空间中的角.
工业机器人技术基础及应用 主讲人:顾老师
§1.1空间直角坐标系 一.空间直角坐标系 坐标原点; 坐标轴; 坐标平面。
直线与平面垂直 生活中的线面垂直现象: 旗杆与底面垂直.
专题二: 利用向量解决 平行与垂直问题.
实数与向量的积.
线段的有关计算.
2.6 直角三角形(二).
北师大版八年级(上) 第五章 位置的确定 5.2 平面直角坐标系(3).
3.3 垂径定理 第2课时 垂径定理的逆定理.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.5空间向量运算的 坐标表示.
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
3.1 变化率与导数   3.1.1 变化率问题 3.1.2 导数的概念.
夹角 曾伟波 江门江海中学.
抛物线的几何性质.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
3.1.3 导数的几何意义.
相似三角形存在性探究 嘉兴市秀洲区王江泾镇实验学校 杨国华
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
O x y i j O x y i j a A(x, y) y x 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算 5.4 平面向量的坐标运算.
§1.2.4 平面与平面的位置关系(一) 高三数学组 李 蕾.
3.2 导数的计算.
2.4.2 抛物线的简单几何性质.
《工程制图基础》 第五讲 投影变换.
3.2.2 复数代数形式的乘除运算.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
第三章 空间向量与立体几何 3.1 空间向量及其运算 3.1.2空间向量的数乘运算.
直线的倾斜角与斜率.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
第一模块 向量代数与空间解析几何 第二节 向量及其坐标表示法 一、向量的概念 二、向量的坐标表示法.
空间直角坐标系.
23.6 图形与坐标 图形的变换与坐标
9.9空间距离.
5.2平面直角坐标系 锦州市实验学校:郭明明.
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
3.2 立体几何中的向量方法 3.2 . 1 直线的方向向量与平面的法向量 1.了解如何用向量把空间的点、直线、平面表示来出.
用向量法推断 线面位置关系.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
2.3 抛物线   2.3.1 抛物线及其标准方程.
2.2.2 椭圆的简单几何性质  第一课时 椭圆的简单几何性质.
3.3 导数在研究函数中的应用   3.3.1 函数的单调性与导数.
生活中的几何体.
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
§3.1.2 两条直线平行与垂直的判定 l1 // l2 l1 ⊥ l2 k1与k2 满足什么关系?
§2.3.2 平面与平面垂直的判定.
2.2 椭 圆 椭圆及其标准方程.
Presentation transcript:

3.1.5 空间向量运算的坐标表示

学习目标 1.理解空间向量坐标的概念,会确定一些简单几何体的顶点坐标. 2.掌握空间向量的坐标运算规律,会判断两个向量的共线或垂直. 3.掌握空间向量的模、夹角公式和两点间距离公式,并能运用这些知识解决一些相关问题.

3.1.5 空 间 向 量 运 算 的 坐 标 表 示 课前自主学案 课堂互动讲练 知能优化训练

课前自主学案 温故夯基

知新益能 1.空间向量的坐标运算 若a=(a1,a2,a3),b=(b1,b2,b3),则 (1)a+b=_______________________ ; (2)a-b=_______________________ ; (3)λa=________________ (λ∈R); (4)a·b=________________; (5)a∥b⇔________,________ ,_________ (λ∈R); (6)a⊥b⇔___________________; (a1+b1,a2+b2,a3+b3) (a1-b1,a2-b2,a3-b3) (λa1,λa2,λa3) a1b1+a2b2+a3b3 a1=λb1 a2=λb2 a3=λb3 a1b1+a2b2+a3b3=0

(x2-x1,y2-y1,z2-z1)

问题探究 提示:正确. 2.如何理解空间向量的坐标运算与平面向量的坐标运算之间的关系? 提示:空间向量的坐标运算与平面向量的坐标运算类似,仅多了一项竖坐标,其法则与横、纵坐标一致.

课堂互动讲练 考点突破 空间向量的坐标运算 向量的坐标即终点坐标减去起点坐标对应的坐标.求点的坐标时,一定要注意向量的起点是否在原点,在原点时,向量的坐标与终点坐标相同;不在原点时,向量的坐标加上起点坐标才是终点坐标.

例1

坐标形式下平行与垂直条件的应用 利用空间向量的坐标运算来解题,要熟练掌握以下两个常用的充要条件,若a=(x1,y1,z1),b=(x2,y2,z2),则a∥b⇔x1=λx2,y1=λy2,z1=λz2(λ∈R);a⊥b⇔x1x2+y1y2+z1z2=0.

例2

互动探究 将本例中条件“若向量ka+b与ka-2b互相垂直”改为“若向量ka+b与a+kb互相平行”,其他条件不变,求k的值. ∴ka+b=(k,k,0)+(-1,0,2)=(k-1,k,2), a+kb=(1,1,0)+(-k,0,2k)=(1-k,1,2k),

利用向量的坐标表示求夹角和距离 利用空间直角坐标系解立体几何中的题,需首先建立空间直角坐标系,选取图中有公共起点且互相垂直的三条线段所在直线为坐标轴;再利用公式解决夹角、模等问题.

如图,在棱长为1的正方体ABCD­A1B1C1D1中,E、F、G分别是DD1、BD、BB1的中点. (1)求证:EF⊥CF; (2)求CE的长. 例3

【名师点评】 在特殊的几何体中建立空间直角坐标系时要充分利用几何体本身的特点,以使各点的坐标易求,利用向量解决几何问题,可使复杂的线面关系的论证、角及距离的计算变得简单.

方法感悟 1.空间向量在几何中的应用 有了向量的坐标表示,利用向量的平行、垂直判定几何中线线、线面的平行与垂直;利用向量长度公式、夹角公式求两点间的距离和两异面直线所成的角,只需通过简单运算即可.在此处,要认真体会向量的工具性作用.

2.关于空间直角坐标系的建立 建系时,要根据图形特点,充分利用图形中的垂直关系确定原点和各坐标轴.同时,使尽可能多的点在坐标轴上或坐标平面内.这样可以较方便的写出点的坐标.

知能优化训练

本部分内容讲解结束 按ESC键退出全屏播放 点此进入课件目录 谢谢使用