Presentation is loading. Please wait.

Presentation is loading. Please wait.

第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法.

Similar presentations


Presentation on theme: "第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法."— Presentation transcript:

1 第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法

2 本章学习要求 1.理解定积分的概念及其性质. 2.了解定积分的几何意义. 3.了解变上限的定积分的性质,熟练掌握牛顿莱布尼茨公式.
4.掌握定积分的换元法和分部积分法. 5.了解无穷区间上的广义定积分的几何意义,牛顿–莱布尼茨公式,定各分的换元法和分部积分法. 重点 定积分的概念及定积分的几何意义,牛顿–莱布尼茨公式,定积分的换元法和分部积分法. 难点 变上限的定积分,定积分的换元法和分部积分法.

3 第一节 定积分的概念 一、定积分的实际背景 二、定积分的概念 三、定积分的几何意义 四、定积分的性质

4 第一节 定积分的概念 一、定积分的实际背景 1. 曲边梯形的面积 曲边梯形:若图形的三条边是直线段,其中有两条垂直
第一节 定积分的概念 一、定积分的实际背景 1. 曲边梯形的面积 曲边梯形:若图形的三条边是直线段,其中有两条垂直 于第三条底边,而其第四条边是曲线,这样的图形称为曲 边梯形,如左下图所示. y O M P Q N B x C A 推广为

5 曲边梯形面积的确定方法:把该曲边梯形沿着 y轴方向切割成许多窄窄的长条,把每个长条近似看作一个矩形,用长乘宽求得小矩形面积,加起来就是曲边梯形面积的近似值,分割越细,误差越小,于是当所有的长条宽度趋于零时,这个阶梯形面积的极限就成为曲边梯形面积的精确值了.如下图所示: x 1 2 n O y y = f (x) = a =b

6

7 2.变速直线运动的路程

8 二、定积分的概念

9

10

11 三、定积分的几何意义

12

13

14 四、定积分的性质

15 仍有

16

17

18

19 思考题

20 第二节 微积分基本公式 一、变上限的定积分 二、牛顿-莱布尼茨 (Newton-Leibniz)公式

21 第二节 微积分基本公式

22 一、变上限的定积分

23

24 如右图所示:

25 例 2 求下列函数的导数:

26

27 二、牛顿-莱布尼茨(Newton-Leibniz)公式

28

29 例1 求定积分:

30

31

32 思考题

33 第三节 定积分的积分方法 一、定积分的换元积分法 二、定积分的分部积分法

34 第三节 定积分的积分方法 一、定积分的换元积分法

35

36

37

38

39

40 注意:求定积分一定要注意定积分的存在性.

41

42

43

44 二、定积分的分部积分法

45

46

47

48

49


Download ppt "第六章 定积分 第一节 定积分的概念 第二节 微积分基本公式 第三节 定积分的积分法."

Similar presentations


Ads by Google