§1.2 §1.2随机事件的概率 0≤P(A)≤1 用一个数来度量可能性的大小。这个 数应该是事件本身所固有的,可以在相同 的条件下通过大量的重复试验予以识别和 检验;可能性大的事件用较大的数来度量, 可能性小的事件用较小的数来度量。这个 用来度量可能性大小的数称为事件的概率, 用 P(A) 表示。

Slides:



Advertisements
Similar presentations
3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
Advertisements

概率论与数理统计 §1.3 古典概型与几何概型. 本节主要内容  排列与组合公式  古典概型  几何概型 §1.3 事件的概率及性质.
小结与复习( 4 ). 1 、内容小结 互斥事件互斥事件 不对立不对立 特点特点 ⑴ A 、 B 不能同时发生, A 发生必 然 B 不发生。 ⑵事件 A+B 是随机事件 概率概率 ,又若 A 1 , A 2 , … , A n 彼此互斥,则 对立对立 特点特点 ⑴ A 、 B 不能同时发生,但必有一.
概率论与数理统计 张剑 Q 概率论与数理统计 张剑 Q 2 : 概率论是一门研究客观世界随机现象数量 规律的数学分支学科. 数理统计学是一门研究怎样去有效地收集、 整理和分析带有随机性的数据,以对所考 察的问题作出推断或预测,直至为采取一 定的决策和行动提供依据和建议的数学分 支学科.
概率统计( ZYH ) 1.3 古典概型与几何概型 一、古典概型 二、几何概型. 概率统计( ZYH ) 回忆 1.1 节的试验, E 1,E 3,E 4 有共同特性: 一、古典概型 ①(有限性)试验的样本空间 Ω 中仅含有限个样本点: ②(等可能性)每个基本事件 {ω i } 发生的可能性相同 :
山东农业大学 概率论与数理统计 主讲人:程述汉 苏本堂 §1.3 古典概型 1. 古典概型  古典概型中事件概率的计算公式  古典概型的概率计算步骤  古典概型的概率计算举例.
1 概率论与数理统计第 3 讲 本讲义可在网址 或 ftp://math.shekou.com 下载.
§1.2 事件的概率 设在 n 次试验中,事件 A 发生了 m 次,则称 为事件 A 发生的频率. 频率 频率的性质 事件 A 、 B 互斥,则 可推广到有限个两两互斥事件的和事 件. 非负性 规范性 可加性 稳定性 某一定数    
随机变量及其概率分布 第二章 离散型随机变量及其分布律 正态分布 连续型随机变量及其分布律 随机变量函数的分布.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
第二章 导数与微分. 二、 微分的几何意义 三、微分在近似计算中的应用 一、 微分的定义 2.3 微 分.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
古典概型习题课. 1 .古典概型 (1) 基本事件的特点 ①任何两个基本事件是 的. ②任何事件 ( 除不可能事件 ) 都可以表示成的和. 2 .古典概型 具有以下两个特点的概率模型称为古典概率模型,简称古典概型. (1) 试验中所有可能出现的基本事件 . (2) 每个基本事件出现的可能性 . 互斥.
概率统计序言.
初中数学 九年级(上册) 4.2 等可能条件下的概率(一)(2).
第三章 概率 单元复习 第一课时.
古典概型习题课.
1.4 古典概型(等可能概型) 1.古典概型 2.典型例题 3. 小结.
第二讲 加法公式乘法公式 本次课讲授第一章第2、3、4、5节; 下次课结束并总结第一章,开始讲授第二章第1节;
第二节 古典概型 (等可能概型).
3.1.3 概率的基本性质.
10.2 立方根.
《高等数学》(理学) 常数项级数的概念 袁安锋
25.2 用列举法求概率(第3课时) 保靖民中:张 强.
25.2 用列举法求概率(第1课时) 曲沟镇第二初级中学:王艳利.
摸球游戏: 盒子里装有黄球和白球,我和你们依次摸球,摸到球后放回去,摇一摇,继续摸。摸到黄球老师赢,摸到白球你们赢,赢者得福娃一个。
等可能条件下的概率(一) 有些事件的概率,如某批足球的质量情况、某种绿豆在相同条件下的发芽情况,是通过在大量重复进行的同一试验时,事件A发生的频率 会稳定地在某一个常数附近摆动, 这个常数就是事件A发生的概率. 通过大量的重复的实验,得到某个事件发生的频率,进而估计其发生的概率。这种方法费时、费力而且结果有一定的摆动性,有些实验还具有破坏性.
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
余角、补角.
1.2 事件的频率与概率 一、事件的频率 二、概率的公理化体系 1.2 事件的频率与概率.
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
第六章 概率初步 6.2 频率的稳定性.
2019年1月3日2时26分 概率论 Probability 江西财经大学 2017年 2019年1月3日2时26分.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第三章 随机事件的概率.
第二讲 数据统计与分析 秦 猛 南京大学物理系 参考教材:《概率论与数理统计》 高新祖 陈华钧 编著 南京大学出版社 1.
概率论 Probability.
3.2.1 古典概型 高二数学组.
本节内容 平行线的性质 4.3.
习题 一、概率论 1.已知随机事件A,B,C满足 在下列三种情况下,计算 (1)A,B,C相互独立 (2)A,B独立,A,C互不相容
实数与向量的积.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
几何概型.
§1.3 条件概率 条件概率与乘法公式   引例 袋中有7只白球,3只红球,白球中有4只木球,3只塑料球;红球中有2只木球,1只塑料球.现从袋中任取1球,假设每个球被取到的可能性相同.若已知取到的球是白球,问它是木球的概率是多少? 古典概型 设 A 表示任取一球,取得白球; B 表示任取一球,取得木球.
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
概 率 统 计 主讲教师 叶宏 山东大学数学院.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
上杭二中 曾庆华 上杭二中 曾庆华 上杭二中 曾庆华.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
§5.2 抽样分布   确定统计量的分布——抽样分布,是数理统计的基本问题之一.采用求随机向量的函数的分布的方法可得到抽样分布.由于样本容量一般不止2或 3(甚至还可能是随机的),故计算往往很复杂,有时还需要特殊技巧或特殊工具.   由于正态总体是最常见的总体,故本节介绍的几个抽样分布均对正态总体而言.
第二节 函数的极限 一、函数极限的定义 二、函数极限的性质 三、小结 思考题.
用列举法求概率 (第二课时).
1.3 概率的定义及其运算 ? ? 从直观上来看,事件A的概率是指事件A发生的可能性 P(A)应具有何种性质?
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
第3讲 概率论初步 3.1 概率 条件概率和加法公式 3.3 计数原则.
§4.5 最大公因式的矩阵求法( Ⅱ ).
Presentation transcript:

§1.2 §1.2随机事件的概率

0≤P(A)≤1 用一个数来度量可能性的大小。这个 数应该是事件本身所固有的,可以在相同 的条件下通过大量的重复试验予以识别和 检验;可能性大的事件用较大的数来度量, 可能性小的事件用较小的数来度量。这个 用来度量可能性大小的数称为事件的概率, 用 P(A) 表示。 一、可能性大小的度量 —— 事件的概率

(一)频率的定义 二、频率(经验概率) —— 概率的统计定义

设 A 是随机试验 E 的任一事件, 则 (二)性质

试验 序号 实例 将一枚硬币抛掷 5 次、 50 次、 500 次, 各做 7 遍, 观察正面出现的次数及频率. 波动最小 随 n 的增大, 频率 f 呈现出稳定性

(2) 抛硬币次数 n 较小时, 频率 f 的随机波动幅 度较大, 但随 n 的增大, 频率 f 呈现出稳定性. 即 当 n 逐渐增大时频率 f 总是在 0.5 附近摆动, 且 逐渐稳定于 0.5. (1) 频率有随机波动性, 即对于同样的 n, 所得的 f 不一定相同 ;

实验者 德 摩根 蒲 丰蒲 丰

重要结论 频率当 n 较小时波动幅度比较大,当 n 逐渐增 大时 , 频率趋于区间 [0 , 1] 上的某一个稳定值,这 个稳定值从本质上反映了事件在试验中出现可能性 的大小.它就是事件的概率,也叫做经验概率.

三、古典概型 — 概率的古典定义

用 i 表示取到 i 号 球, i =1,2,…,10. 称这样一类随机试验 为古典概型. 2 且每个样本点 ( 或者说 基本事件 ) 出现的可能 性相同. S={1,2,…,10}, 如 i =

称这种试验为 有限等可能随机试验 或古典概型. 定义 1 若随机试验满足下述两个条件: (1) 它的样本空间只有有限多个样本点; (2) 每个样本点出现的可能性相同.

对于古典概型,其样本空间 S(Ω) 由 n 个样本点组成,事件 A 包含 k 个样本点, 则定义事件 A 的概率为:

排列与组合是计算古典概率的重要工具 : 下面这个结论对吗? 抛掷两枚均匀硬币, 观察正、反面出现的情况。 数学家达郎贝尔说共有三种情况 : { 正、正 } , { 反、反 } , { 一正、一反 } ; 从而: P{ 一正、一反 }=1/3.

古典概型的基本模型 : 摸球模型 (1) 无放回地摸球 问题 1 设袋中有 4 只白球和 2 只黑球, 现从袋中无 放回地依次摸出 2 只球, 求这 2 只球都是白球的概率. 解 基本事件总数为 A 所包含基本事件的个数为

(2) 有放回地摸球 问题 2 设袋中有 4 只红球和 6 只黑球, 现从袋中有放 回地摸球 3 次, 求前 2 次摸到黑球、第 3 次摸到红球 的概率. 解 第 1 次摸球 10 种第 2 次摸球 10 种第 3 次摸球 10 种 6种6种第 1 次摸到黑球 6种6种 第 2 次摸到黑球 4种4种 第 3 次摸到红球

基本事件总数为 A 所包含基本事件的个数为 课堂练习 1 o 电话号码问题 在 7 位数的电话号码中, 第一位 不能为 0 ,求数字 0 出现 3 次的概率. 2 o 骰子问题 掷 3 颗均匀骰子, 求点数之和为 4 的 概率.

古典概型的基本模型 : 球放入杯子模型 (1) 杯子容量无限 问题 1 把 4 个球放到 3 个杯子中去, 求第 1 、 2 个 杯子中各有两个球的概率, 其中假设每个杯子可 放任意多个球. 4 个球放到 3 个杯子的所有放法

因此第 1 、 2 个杯子中各有两个球的概率为

(2) 每个杯子只能放一个球 问题 2 把 4 个球放到 10 个杯子中去, 每个杯子只能 放一个球, 求第 1 至第 4 个杯子各放一个球的概率. 解 第 1 至第 4 个杯子各放一个球的概率为

2 o 生日问题 某班有 20 个学生都是同一年出生 的, 求有 10 个学生生日是 1 月 1 日, 另外 10 个学生生 日是 12 月 31 日的概率. 课堂练习 1 o 分房问题 将张三、李四、王五 3 人等可能地 分配到 3 间房中去, 试求每个房间恰有 1 人的概率.

解 典型例题

在 N 件产品中抽取 n 件, 其中恰有 k 件次品的取法 共有 于是所求的概率为 解 在 N 件产品中抽取 n 件的所有可能取法共有

例 3 假设每人的生日在一年 365 天中的任一天 是等可能的, 即都等于 1/365, 求 64 个人中至少 有 2 人生日相同的概率. 64 个人生日各不相同的概率为 故 64 个人中至少有 2 人生日相同的概率为 解

说明

利用软件包进行数值计算.

四、 几何概型 — 概率的几何定义 例 甲、乙二人在 0 到 T 时间内相约于指定地点,先 到者等候另一人 t(t<T) 时刻后离去。如果两人在任一 时刻到达是等可能的。求二人能会面的概率? (1) 它的样本空间具有无限个样本点. (2) 每个样本点出现的可能性相同. 称具有此特点的无限等可能试验为几何概型.

对于几何概型,则只能以等可能性为基础,借 助于几何度量(长度、面积和体积等)来合理的规 定概率。具体如下: 事件 A 的样本点构成区域 g ,样本空间构成区域 G ,这里的区域可以是一维、二维、三维等等,则 A 发生的概率定义为: 概率的几何定义。 静态的几何度量 “ 比例 ” 转化为动态的 “ 概率 ”

例 1 :求引例的概率。 解:以 x 、 y 分别表示甲、乙二人到达的时刻。则 从而,所求概率为

蒲丰投针试验 例 年, 法国科学家蒲丰 (Buffon) 提 出了投针试验问题. 平面上画有等距离为 a(a>0) 的一些平行直线, 现向此平面任意 投掷一根长为 b( b<a ) 的针, 试求针与某一平行直线 相交的概率. 解

由投掷的任意性可知, 这是一个几何概型问题.

蒲丰投针试验的应用及意义

历史上一些学者的计算结果 ( 直线距离 a=1) Reina Lazzerini Fox De Morgan Smith Wolf 相交次数投掷次数针长时间试验者

1933 年 ,苏联数学家柯尔莫哥洛夫. 五、概率公理 — 概率的数学定义

(1) 0  p(A)  1 (2) p(s) = 1 p(  )=0 (3) 若事件 互不相容,则 p(A 1  A 2  …..) = p(A 1 )+p(A 2 )+…… (1)—(3) 称为概率公理。 设 E 是随机试验; S 是样本空间; p(A) 为事件的概 率, 且满足: 此即为概率的公理化定义。

2. 最简单的随机现象 古典概型 古典概率 几何概型 试验结果 连续无穷 六、小结 1. 频率 ( 波动 ) 概率 ( 稳定 ). 3. 概率的公理化定义.