神奇的0.618.

Slides:



Advertisements
Similar presentations
大家族的生存秘密 付俊 北京师范大学生命科学学院 03 级 学号: 大家族的生存秘密 节肢动物门昆虫纲的物种从数量和种类 来说都占了地球上物种数量和种类的绝大 多数。但教材上并没有给出具体的介绍。 这篇论文将从昆虫的生存特性和生理特 点来介绍地球上昆虫繁盛的原因。
Advertisements

1 、谁能说说什么是因数? 在整数范围内( 0 除外),如果甲数 能被乙数整除,我们就说甲数是乙数的 倍数,乙数是甲数的因数。 如: 12÷4=3 4 就是 12 的因数 2 、回顾一下,我们认识的自然数可以分 成几类? 3 、其实自然数还有一种新的分类方法, 你知道吗?这就是我们今天这节课的学.
因数与倍数 2 、 5 的倍数的特征
摆一摆,想一想. 棋子个数数的个数 摆出的数 、 10 2 、 11 、 20 3 、 12 、 21 、 30 4 、 13 、 22 、 31 、 40 5 、 14 、 23 、 32 、 41 、
第一讲 : §1.1~§1.3 数学起源与古希腊数学 §1.1 数学思想的萌芽. 古代巴比伦的数学.
第五节 函数的微分 一、微分的定义 二、微分的几何意义 三、基本初等函数的微分公式与微分运算 法则 四、微分形式不变性 五、微分在近似计算中的应用 六、小结.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
全微分 教学目的:全微分的有关概念和意义 教学重点:全微分的计算和应用 教学难点:全微分应用于近似计算.
第三节 微分 3.1 、微分的概念 3.2 、微分的计算 3.3 、微分的应用. 一、问题的提出 实例 : 正方形金属薄片受热后面积的改变量.
3.5 元 / 千克 2.6 元 / 千克 买 3 千克 要多少钱? = (元)
做个百数表. 把表格填完整,仔细观察,你还有什么新发现 ?
黄金分割.
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
B e a c d. b e a c d b e a c d 谁快 轮船行驶210千米要7小时 客车3小时行驶150千米 路程÷时间=速度.
黄金分割 沈阳市第七十二中学 吴静.
与其说莫扎特是音乐家,还不如说是数学家,整个作品从头到尾严丝合缝,每个环节都是紧紧扣在一起的。­
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
第5章 定积分及其应用 基本要求 5.1 定积分的概念与性质 5.2 微积分基本公式 5.3 定积分的换元积分法与分部积分法
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
§5 微分及其应用 一、微分的概念 实例:正方形金属薄片受热后面积的改变量..
探索三角形相似的条件(2).
C++中的声音处理 在传统Turbo C环境中,如果想用C语言控制电脑发声,可以用Sound函数。在VC6.6环境中如果想控制电脑发声则采用Beep函数。原型为: Beep(频率,持续时间) , 单位毫秒 暂停程序执行使用Sleep函数 Sleep(持续时间), 单位毫秒 引用这两个函数时,必须包含头文件
北师大版 六年级上册 第一单元 绿色圃中小学教育网
计算机数学基础 主讲老师: 邓辉文.
动态规划(Dynamic Programming)
整合思维导图的初中英语教学设计 主讲人:卢璐.
绿色圃中小学教育网 比例 比例的意义 绿色圃中小学教育网
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
1.1特殊的平行四边形 1.1菱形.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
比例的应用.
实数与向量的积.
线段的有关计算.
相似三角形 石家庄市第十中学 刘静会 电话:
第四章 四边形性质探索 第五节 梯形(第二课时)
一个直角三角形的成长经历.
3.3 垂径定理 第2课时 垂径定理的逆定理.
12.2全等三角形的判定(2) 大连市第三十九中学 赵海英.
用计算器开方.
数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。      ——毕达哥拉斯
复习: 若A(x1,y1,z1) , B(x2,y2,z2), 则 AB = OB - OA=(x2-x1 , y2-y1 , z2-z1)
正切函数的图象和性质 周期函数定义: 一般地,对于函数 (x),如果存在一个非零常数T,使得当x取定义域内的每一个值时,都有
3.1.2 空间向量的数量积运算 1.了解空间向量夹角的概念及表示方法. 2.掌握空间向量数量积的计算方法及应用.
辅助线巧添加 八年级数学专项特训: ——倍长中线法.
1.设A和B是集合,证明:A=B当且仅当A∩B=A∪B
第4课时 绝对值.
空间平面与平面的 位置关系.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
极限存在准则及其应用 数理系 苑静.
八年级数学(上册)• 北师版 探索勾股定理.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
正弦、余弦函数的性质 华容一中 伍立华 2017年2月24日.
高中数学必修 平面向量的基本定理.
3.1无理数2.
欢迎大家来到我们的课堂 §3.1.1两角差的余弦公式 广州市西关外国语学校 高一(5)班 教师:王琦.
第一单元第一课 造型的表现力 长沙麓山国际实验学校 陈刚.
第5课 美妙的万花筒世界 ——如何实现LOGO重复命令的嵌套.
锐角三角函数(1) ——正 弦.
3.4 角的比较.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
4.1比例线段(三) 数学缔造完美 南海实验初中 徐晓东.
位似.
生活中的几何体.
第二次课后作业答案 函数式编程和逻辑式编程
本节内容 this指针 视频提供:昆山爱达人信息技术有限公司 官网地址: 联系QQ: QQ交流群 : 联系电话:
正方形的性质.
3.3.2 两点间的距离 山东省临沂第一中学.
Presentation transcript:

神奇的0.618

神圣分割 关于黄金分割的起源大多认为来自毕达哥拉斯,据说在古希腊,有一天毕达哥拉斯走在街上,在经过铁匠铺前他听到铁匠打铁的声音非常好听,于是驻足倾听。他发现铁匠打铁节奏很有规律,这个声音的比列被毕达哥斯拉用数理的方式表达出来。被应用在很多领域,后来很多人专门研究过,开普勒称其为“神圣分割”也有人称其为“金法”。在金字塔建成1000年后才出现毕达哥拉斯定律,可见这很早既存在。只是不知这个谜底。

到底什么是黄金分割??

0.618 这是一个十分有趣的数字,我们以0.618来近似,通过简单的计算就可以发现: 1/0.618=1.618   1/0.618=1.618   (1-0.618)/0.618=0.618

斐波那契数列与黄金分割 经研究发现,相邻两个菲波那契数的比值是随序号的增加而逐渐趋于黄金分割比的。即f(n)/f(n+1)-→0.618…。由于斐波那契数都是整数,两个整数相除之商是有理数,所以只是逐渐逼近黄金分割比这个无理数

几何图形与黄金分割 五角星中可以找到的所有线段之间的长度关系都是符合黄金分割比的。正五边形对角线连满后出现的所有三角形,都是黄金分割三角形

黄金分割无处不在!! 人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳

建筑师们对数学0. 618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0  建筑师们对数学0.618…特别偏爱,无论是古埃及的金字塔,还是巴黎的圣母院,或者是近世纪的法国埃菲尔铁塔,都有与0.618…有关的数据。人们还发现,一些名画、雕塑、摄影作品的主题,大多在画面的0.618…处。艺术家们认为弦乐器的琴马放在琴弦的0.618…处,能使琴声更加柔和甜美

优选法 果将实验点取在区间的0.618处,那么实验的次数将大大减少。这种取区间的0.618处作为试验点的方法就是一维的优选法,也称0.618法。实践证明,对于一个因素的问题,用“0.618法”做16次试验就可以完成“对分法”做2500次试验所达到的效果。因此大画家达·芬奇把0.618…称为黄金数。

当然黄金分割的用途还有很多很多 Jkjk

摄影

为啥要挑16:9?!