算法的概念.

Slides:



Advertisements
Similar presentations
质数和合数 中心小学 顾禹 人教版小学五年级数学下册 一、激趣导入 提示:密码是一个三位 数,它既是一个偶数, 又是 5 的倍数;最高位是 9 的最大因数;中间一位 是最小的质数。你能打 开密码锁吗?
Advertisements

1 、谁能说说什么是因数? 在整数范围内( 0 除外),如果甲数 能被乙数整除,我们就说甲数是乙数的 倍数,乙数是甲数的因数。 如: 12÷4=3 4 就是 12 的因数 2 、回顾一下,我们认识的自然数可以分 成几类? 3 、其实自然数还有一种新的分类方法, 你知道吗?这就是我们今天这节课的学.
因数与倍数 2 、 5 的倍数的特征
3 的倍数特征 抢三十
质数和合数 富县北教场小学 潘小娟 1 、什么叫因数? 2 、自然数分几类? 奇数和偶数. 3 、自然数还有一种新的分类方法, 就是按一个数的因数个数来分. 4 、写出 1—20 的因数。 前置性作业.
质数和合数 2 的因数( ) 6 的因数( ) 10 的因数 ( ) 12 的因数 ( ) 14 的因数 ( ) 11 的因数 ( ) 4 的因数( ) 9 的因数( ) 8 的因数( ) 7 的因数( ) 1 、 2 、 3 、 4 、 6 、 12 1 、 11 1 、 2 、 5 、 10.
本节课我们主要来学习素数和合 数,同学们要了解素数和合数的 定义,能够判断哪些是素数,哪 些是合数,知道 100 以内的素数。
因数与倍数 2 、 5 的倍数的特征 绿色圃中小学教育网 扶余市蔡家沟镇中心小学 雷可心.
2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
因数与倍数 2 、 5 、 3 的倍数的特 征 新人教版五年级数学下册 执教者:佛山市高明区明城镇明城小学 谭道芬.
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
——Windows98与Office2000(第二版) 林卓然编著 中山大学出版社
代数方程总复习 五十四中学 苗 伟.
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
练习 1。点P(5a+1,12a)在圆(x-1)2+y2=1的内部,则a的取值 范围是 2.点P( )与圆x2+y2=1的位置关系是 ( )
圆的方程复习.
18.2一元二次方程的解法 (公式法).
教材版本:新教材人教版九年级(上) 作品名称:同类二次根式 主讲老师:张翀 所在单位:珠海市平沙第一中学.
圆的一般方程 x2+y2+Dx+Ey+F=0 O C M(x,y).
圆复习.
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
10.2 立方根.
《高等数学》(理学) 常数项级数的概念 袁安锋
四种命题 2 垂直.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
初中数学 九年级(下册) 5.3 用待定系数法确定二次函数表达式.
直线和圆的位置关系.
探索三角形相似的条件(2).
走进编程 程序的顺序结构(二).
用函数观点看方程(组)与不等式 14.3 第 1 课时 一次函数与一元一次方程.
动态规划(Dynamic Programming)
本节内容 平行线的性质 4.3.
若2002年我国国民生产总值为 亿元,如果 ,那么经过多少年国民生产总值 每年平均增长 是2002年时的2倍? 解:设经过 年国民生产总值为2002年时的2倍, 根据题意有 , 即.
人教版五年级数学上册第四单元 解方程(一) 马郎小学 陈伟.
6.4不等式的解法举例(1) 2019年4月17日星期三.
实数与向量的积.
线段的有关计算.
第四章 四边形性质探索 第五节 梯形(第二课时)
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
算法初步 §1.1.2 程序框图.
用计算器开方.
1.2 有理数 第1课时 有理数 伏家营中学 付宝华.
解 简 易 方 程.
1.1算法的概念.
1.2 子集、补集、全集习题课.
算法初步 §1.1.2 程序框图.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第4课时 绝对值.
1.2基本算法语句 1.2.3循环语句.
直线和圆的位置关系 ·.
一元二次不等式解法(1).
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
2019/5/20 第三节 高阶导数 1.
高中数学必修 平面向量的基本定理.
3.1无理数2.
加减消元法 授课人:谢韩英.
第二章 一元二次方程 2.4 用因式分解求解一元二次方程法(1).
第四节 向量的乘积 一、两向量的数量积 二、两向量的向量积.
线性规划 Linear Programming
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
1.2.2条件语句.
解下列各一元二次方程式: (1)(x+1)2=81 x+1=9 或 x+1=-9 x=8 或 x=-10 (2)(x-5)2+3=0
第二次课后作业答案 函数式编程和逻辑式编程
一元一次方程的解法(-).
§2 自由代数 定义19.7:设X是集合,G是一个T-代数,为X到G的函数,若对每个T-代数A和X到A的函数,都存在唯一的G到A的同态映射,使得=,则称G(更严格的说是(G,))是生成集X上的自由T-代数。X中的元素称为生成元。 A变, 变 变, 也变 对给定的 和A,是唯一的.
3.3.2 两点间的距离 山东省临沂第一中学.
9.3多项式乘多项式.
Presentation transcript:

算法的概念

计算机与算法:  在现代社会里,计算机已经成为人们日常生活和工作不可缺少的工具.听音乐、看电影、玩游戏、画卡通画、处理数据…计算机几乎可以是一个全能的助手,你可以用它来做你想做的任何事情.那么,计算机是怎样工作呢?要想弄清楚这个问题,就需要学习算法. 什么是算法?

木门的制作过程: 第一步:准备木材; 第二步:将木材加工成木板; 第三步:将加工好的木板放到木板烘干机上进行烘干; 第四步:将烘干的木板进行加工,制作成木门。

解方程 第一步, 由(1)得 第二步, 将(3)代入(2)得 第三步, 解(4)得 第四步, 将(5)代入(3)得 第五步, 得到方程组的解得

解方程 第一步, 第二步, 第三步, 第四步, 第五步, 得到方程组的解得

写出一般二元一次方程组的解法步骤. 第一步, 第二步,解(3)得

写出一般二元一次方程组的解法步骤. 第三步, 第四步,解(4)得 第五步,得到方程组的解为

一、算法的概念 算法(algorithm)一词源于算术(algorism),即算术方法,是指一个由已知推求未知的运算过程。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。

广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算法,

在数学中算法通常指按照一定规则 解决某一类问题的明确和有限的步骤. 算法的概念 × 算法: 在数学中算法通常指按照一定规则 解决某一类问题的明确和有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.

思考: 2.算法的特点: 明确性:算法中的每一个步骤都是确切的,能有效的执行且得到确定的结果,不能模棱两可。 有限性:算法应由有限步组成,必须在有限操作之后停止,并给出计算结果。 思考: 有人对歌德巴赫猜想“任何大于4的偶数都能写成两个奇质数之和”设计了如下操作步骤: 第一步:检验6=3+3 第二步:检验8=3+5 第三步:检验10=5+5 . . . . . . 利用计算机无穷地进行下去! 请问,利用这种程序能够证明猜想的正确性吗? 这是一种算法吗?

2.算法的特点: 明确性:算法中的每一个步骤都是确切的,能有效的执行且得到确定的结果,不能模棱两可。 有限性:算法应由有限步组成,必须在有限操作之后停止,并给出计算结果。 有序性:算法从初始步骤开始,分为若干明确的步骤,每一步都只能有一个确定的继任者,只有执行完前一步才能进入到后一步,并且每一步都确定无误后,才能解决问题。 不唯一性:求解某一个问题的解法不一定是唯一的,对于同一个问题可以有不同的解法,但算法有优劣之分,好的算法是我们追求的目标. 普适性:写出的算法必须能解决一类问题,并且能重复使用,这是设计算法的一条基本原则,这样才能使算法更有价值.

写出交换两个大小相同的杯子中 的液体 (A 水、 B 酒) 的一个算法. 第一步,找一个大小与A相同的空杯子C. 巩固概念 × 写出交换两个大小相同的杯子中 的液体 (A 水、 B 酒) 的一个算法. 第一步,找一个大小与A相同的空杯子C. 第二步,将A 中的水倒入C中. 第三步,将B中的酒精倒入A中. 第四步,将C中的水倒入B中,结束.

例1.(1)设计一个算法判断7是否为质数. 第一步, 用2除7,得到余数1.因为余数不为0, 所以2不能整除7. 应用举例 × 例1.(1)设计一个算法判断7是否为质数. 第一步, 用2除7,得到余数1.因为余数不为0, 所以2不能整除7. 第二步, 用3除7,得到余数1.因为余数不为0, 所以3不能整除7. 第三步, 用4除7,得到余数3.因为余数不为0, 所以4不能整除7. 第四步, 用5除7,得到余数2.因为余数不为0, 所以5不能整除7. 第五步, 用6除7,得到余数1.因为余数不为0, 所以6不能整除7.因此,7是质数.

例1.(2)设计一个算法判断35是否为质数. 第一步, 用2除35,得到余数1.因为余数不为0, 所以2不能整除35. 应用举例 × 例1.(2)设计一个算法判断35是否为质数. 第一步, 用2除35,得到余数1.因为余数不为0, 所以2不能整除35. 第二步, 用3除35,得到余数2.因为余数不为0, 所以3不能整除35. 第三步, 用4除35,得到余数3.因为余数不为0, 所以4不能整除7. 第四步, 用5除35,得到余数0.因为余数为0, 所以5能整除35.因此,35不是质数.

设计一个算法,判断整数n(n>2)是否为质数? 第二步,令i=2 第三步,用i除n,得到余数r。 第四步,判断“r=0”是否成立。 若是,则n不是质数,结束算法; 否则,将i的值增加1,仍用i表示。 第五步,判断“i>(n-1)”是否成立。 若是,则n不是质数,结束算法; 否则,返回第三步

做一做 任意给定一个正整数 ,试设计一个算法对 是否为质数做出判断。 第一步: 任意给定一个正整数 ,试设计一个算法对 是否为质数做出判断。 第一步: 判断 是否等于1。若是,则 既不是质数,也不是合数。若 >1,则执行第二步。 第二步: 判断是 否等于2。若 =2,则 是质数;若 >2,则执行第三步。 依次检验 的结果是否 为整数。若有,则 不是质数;若没有,则 是质数。 第三步:

练习 1.任意给定一个正实数,设计一个算法求以这个数为半径的圆的面积. 第一步:输入任意一个正实数r; 第二步:计算圆的面积: S=πr2;

2.任意给定一个大于1 的正整数n,设计一个算法求出n的所有因数. 答案1:第一步:依次以2~(n-1)为除数去除n,检查余数是否为0,若是,则是n的因数;若不是,则不是n的因数. 第二步:在n的因数中加入1和n. 第三步:输出n的所有因数. 答案2:第一步:给定大于1的整数n 第二步:令i=1 第三步:用i除n,得余数r 第四步:判断“ r=0” 是否成立,若是,则i是n的因数,输出i, 第五步:将i的值增加1,仍用i表示. 第六步:判断“i>n结束算法,否则返回第三步.

3、写出求一元二次方程 ax2+bx+c=0 的根的算法. 第一步,计算Δ=b2-4ac. 巩固概念 × 3、写出求一元二次方程 ax2+bx+c=0 的根的算法. 第一步,计算Δ=b2-4ac. 第二步,如果Δ<0,则原方程无实数解 ;否则(Δ≥0)时, 第三步:输出x1, x2或无实数解的信息.

练习题 4.下面的四种叙述不能称为算法的是( ) (A)广播的广播操图解 (B)歌曲的歌谱 (C)做饭用米 (D)做米饭需要刷锅、淘米、添水、加热这些步骤 C

5.下列关于算法的说法正确的是( ) (A)某算法可以无止境地运算下去 (B)一个问题的算法步骤可以是可逆的 (C)完成一件事情的算法有且只有一种 (D)设计算法要本着简单、方便、可操作的原则 D

6.下列关于算法的说法中,正确的是( ). A. 算法就是某个问题的解题过程 B. 算法执行后可以不产生确定的结果 C. 解决某类问题的算法不是惟一的 D. 算法可以无限地操作下去不停止 C

7.下列运算中不属于我们所讨论算法范畴的是( ). A. 已知圆的半径求圆的面积 B. 从一副扑克牌随意抽取3张扑克牌抽到24点的可能性 C. 已知坐标平面内的两点求直线的方程 D. 加减乘除运算法则 B

8.下列语句表达中是算法的有( ). ① 从济南到巴黎可以先乘火车到北京再坐飞机抵达; ②利用公式 S = ah÷2 计算底为1高为2的三角形的面积; ③ x>2x +4; ④求M(1,2)与N(3,5)两点连线的方程可先求MN的斜率再利用点斜式方程求得. A. 1 个 B. 2 个 C. 3 个 D. 4 个 C

9.写出求1+2+3+…+100的一个算法.可以运用公式1+2+3+…+n= 直接计算. 第一步    ①   ; 第二步    ②   ; 第三步 输出运算结果. ①取n=100 ②计算

1.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99,求他的总分和平均成绩的一个算法为: 第一步 取A=89,B=96,C=99; 第二步    ①   ; 第三步    ②   ; 第四步 输出D,E. ①计算总分D=A+B+C ②计算平均成绩E=