解排列组合问题的十七种常用策略.

Slides:



Advertisements
Similar presentations
质数和合数 中心小学 顾禹 人教版小学五年级数学下册 一、激趣导入 提示:密码是一个三位 数,它既是一个偶数, 又是 5 的倍数;最高位是 9 的最大因数;中间一位 是最小的质数。你能打 开密码锁吗?
Advertisements

1 、谁能说说什么是因数? 在整数范围内( 0 除外),如果甲数 能被乙数整除,我们就说甲数是乙数的 倍数,乙数是甲数的因数。 如: 12÷4=3 4 就是 12 的因数 2 、回顾一下,我们认识的自然数可以分 成几类? 3 、其实自然数还有一种新的分类方法, 你知道吗?这就是我们今天这节课的学.
因数与倍数 2 、 5 的倍数的特征
质数和合数 富县北教场小学 潘小娟 1 、什么叫因数? 2 、自然数分几类? 奇数和偶数. 3 、自然数还有一种新的分类方法, 就是按一个数的因数个数来分. 4 、写出 1—20 的因数。 前置性作业.

3 的倍数的特征 的倍数有 : 。 5 的倍数有 : 。 既是 2 的倍数又是 5 的倍数有 : 。 12 , 18 , 20 , 48 , 60 , 72 , , 25 , 60 ,
因数与倍数 2 、 5 的倍数的特征 绿色圃中小学教育网 扶余市蔡家沟镇中心小学 雷可心.
2 和 5 的倍数的特征 运动热身 怎样找一个数的倍数? 从小到大写出 2 的倍数( 10 个): 写出 5 的倍数( 6 个) 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 5 , 10 , 15 , 20 , 25 , 30.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
3.5 元 / 千克 2.6 元 / 千克 买 3 千克 要多少钱? = (元)
第四单元 100 以内数的认识
2 、 5 的倍数的特征 玉田百姓. 1 、在 2 、 3 、 5 、 8 、 10 、 12 、 25 、 40 这几个数中, 40 的因数有几个? 5 的倍数有几个? 复习: 2 、在 6 、 10 、 12 、 15 、 18 、 20 这几个数中,哪些数 是 2 的倍数?哪些数是 5 的倍数?
冀教版四年级数学上册 本节课我们主要来学习 2 、 3 、 5 的倍数特征,同学们要注意观察 和总结规律,掌握 2 、 3 、 5 的倍 数分别有什么特点,并且能够按 要求找出符合条件的数。
新人教版四年级数学上册 笔算除法 森村中心学校 江国飞 1 、口算。 360÷30= 840÷40= 200÷50= 270÷90= 40÷20= ÷40=3600÷19≈30 90÷30=3 900÷31≈30.
第四单元 100 以内数的认识
练一练: 在数轴上画出表示下列各数的点, 并指出这些点相互间的关系: -6 , 6 , -3 , 3 , -1.5, 1.5.
2 、 5 的倍数特征 集合 2 的倍数(要求) 在百数表上依次将 2 的倍数找出 并用红色的彩笔涂上颜色。
圆的一般方程 (x-a)2 +(y-b)2=r2 x2+y2+Dx+Ey+F=0 Ax2+Bxy+Cy2+Dx+Ey+ F=0.
§1 二阶与三阶行列式 ★二元线性方程组与二阶行列式 ★三阶行列式
教材版本:新教材人教版九年级(上) 作品名称:同类二次根式 主讲老师:张翀 所在单位:珠海市平沙第一中学.
6.9二元一次方程组的解法(2) 加减消元法 上虹中学 陶家骏.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
排列组合应用题解法综述 计数问题中排列组合问题是最常见的,由于其解法往往是构造性的, 因此方法灵活多样, 不同解法导致问题难易变化也较大,而且解题过程出现“重复”和“遗漏”的错误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。
2013年MBA数学联考 排列组合技巧分析.
排列组合应用题解法综述 计数问题中排列组合问题是最常见的,由于其解法往往是构造性的, 因此方法灵活多样, 不同解法导致问题难易变化也较大,而且解题过程出现“重复”和“遗漏”的错误较难自检发现。因而对这类问题归纳总结,并把握一些常见解题模型是必要的。
复习 An = n(n-1)(n-2)…(n-m+1) A = m n﹗ m n (n-m)﹗
解排列组合问题的常用策略 数学组 白爱国.
人教新课标版三年级数学下册 笔算除法.
四种命题 2 垂直.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
1.2.2 组合(二).
组 合 复习 引入 探求1 探求2 组合 练习1 例1 巩固1 巩固2 小结 作业 公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
第二章 导数与微分 第二节 函数的微分法 一、导数的四则运算 二、复合函数的微分法.
加减法解二元一次方程组 肇庆市睦岗镇大龙学校 彭素冉.
探索三角形相似的条件(2).
1.2.2 第一课时 组合的概念及组合数.
3.解:连续掷同一枚硬币4次的基本事件总数为 ,
【你一定记住这些话!】 1.今天能做的事绝不拖到明天 2.自己能做的事绝不麻烦别人 解排列、组合的策略 苏教版选修2-3 姓名:YZJ
第一章 预备知识 第一节 排列与组合 第二节 集合.
第三章 多维随机变量及其分布 §2 边缘分布 边缘分布函数 边缘分布律 边缘概率密度.
元素替换法 ——行列式按行(列)展开(推论)
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
排列(一).
1.2.1排列(第一课时).
1.2.1排列(一).
1.2.2 组合(一).
2.1.2 空间中直线与直线 之间的位置关系.
第一章 函数与极限.
人教版五年级数学上册第四单元 解方程(一) 马郎小学 陈伟.
实数与向量的积.
线段的有关计算.
北师大版三年级数学下册 电 影 院.
线 性 代 数 厦门大学线性代数教学组 2019年4月24日6时8分 / 45.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
1.2 子集、补集、全集习题课.
第4课时 绝对值.
2、5的倍数的特征 马郎小学 陈伟.
2、5、3的倍数的特征.
乘法的初步认识.
找 因 数.
3.4 角的比较.
第三节 数量积 向量积 混合积 一、向量的数量积 二、向量的向量积 三、向量的混合积 四、小结 思考题.
位似.
第3讲 概率论初步 3.1 概率 条件概率和加法公式 3.3 计数原则.
§4.5 最大公因式的矩阵求法( Ⅱ ).
一元一次方程的解法(-).
9.3多项式乘多项式.
Presentation transcript:

解排列组合问题的十七种常用策略

复习巩固 1.分类计数原理(加法原理) 种不同的方法. 1.分类计数原理(加法原理)  完成一件事,有n类办法,在第1类办法中有 m1种不同的方法,在第2类办法中有m2 种不同的方法,…,在第n类办法中有mn种不同的方法,那么完成这件事共有: 种不同的方法.

2.分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2 种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有: 种不同的方法. 3.分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.

解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事 2.怎样做才能完成所要做的事,即采取分步还 是分类,或是分步与分类同时进行,确定分多 少步及多少类。 3.确定每一步或每一类是排列问题(有序)还是 组合(无序)问题,元素总数是多少及取出多 少个元素. ※解决排列组合综合性问题,往往类与步交 叉,因此必须掌握一些常用的解题策略

1.排列的定义: 从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。 2.组合的定义: 从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合. 排列与组合的关键是问题与次序有无关系。 3.排列数公式: 4.组合数公式: 5 加法原理和乘法原理:完成任务时是分类进行还是步进行。

一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字 五位奇数. 先排末位共有___ 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置 先排末位共有___ 然后排首位共有___ 最后排其它位置共有___ 由分步计数原理得 =288

位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素 位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法,若以元素分析为主,需先安排特殊元素,再处理其它元素.若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。若有多个约束条件,往往是考虑一个约束条件的同时还要兼顾其它条件

7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 练习题 7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 解一:分两步完成; 第一步选两葵花之外的花占据两端和中间的位置 第二步排其余的位置: 解二:第一步由葵花去占位: 第二步由其余元素占位: 小结:当排列或组合问题中,若某些元素或某些位置有特殊要 求 的时候,那么,一般先按排这些特殊元素或位置,然后再 按排其它元素或位置,这种方法叫特殊元素(位置)分析法。

解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相 邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。 甲 乙 丙 丁 由分步计数原理可得共有 种不同的排法 =480

要求某几个元素必须排在一起的问题,可以用 捆绑法来解决问题.即将需要相邻的元素合并 为一个元素,再与其它元素一起作排列,同时 要注意合并元素内部也必须排列.

某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为( ) 练习题 某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为( ) 20

三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个 独唱,舞蹈节目不能连续出场,则节目的出 场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共 有 种, 第二步将4舞蹈插入第一步排 好的6个元素中间包含首尾两个空位共有 种 不同的方法 由分步计数原理,节目的 不同顺序共有 种 相 独 独 独 相

元素相离问题可先把没有位置要求的元素进行排队再把不相邻元素插入中间和两端

练习题 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为( ) 30

四.定序问题倍缩空位插入策略 例4.7人排队,其中甲乙丙3人顺序一定共有多 少不同的排法 (倍缩法)对于某几个元素顺序一定的排列 问题,可先把这几个元素与其他元素一起 进行排列,然后用总排列数除以这几个元 素之间的全排列数,则共有不同排法种数 是: 解: (空位法)设想有7把椅子让除甲乙丙以外 的四人就坐共有 种方法,其余的三个 位置甲乙丙共有 种坐法,则共有 种 方法 1 思考:可以先让甲乙丙就坐吗?

(插入法)先排甲乙丙三个人,共有1种排法,再 把其余4四人依次插入共有 方法 4*5*6*7 定序问题可以用倍缩法,还可转化为占位插 空模型处理 练习题 10人身高各不相等,排成前后排,每排5人,要 求从左至右身高逐渐增加,共有多少排法?

解:完成此事共分六步:把第一名实习生分配 到车间有 种分法. 把第二名实习生分配 7 到车间也有7种分法, 依此类推,由分步计 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有 多少种不同的分法 解:完成此事共分六步:把第一名实习生分配 到车间有 种分法. 把第二名实习生分配 7 到车间也有7种分法, 依此类推,由分步计 数原理共有 种不同的排法 允许重复的排列问题的特点是以元素为研究 对象,元素不受位置的约束,可以逐一安排 各个元素的位置,一般地n不同的元素没有限 制地安排在m个位置上的排列数为 种 n m

练习题 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为( ) 42 2. 某8层大楼一楼电梯上来8名乘客人,他们 到各自的一层下电梯,下电梯的方法 ( )

(5-1)! A B C E D D A B C E 六.环排问题线排策略 例6. 5人围桌而坐,共有多少种坐法? 解:围桌而坐与坐成一排的不同点在于,坐成 圆形没有首尾之分,所以固定一人A并从 此位置把圆形展成直线其余4人共有____ 种排法即 (5-1)! A B C E D D A B C E

一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有

练习题 6颗颜色不同的钻石,可穿成几种钻石圈 60 要考虑“钻石圈”可以翻转的特点 设六颗颜色不同的钻石为a,b,c d,e,f.与围桌而坐情形不同点是a,b,c,d,e,f与f,e,d,c,b,a在围桌而坐中是两种排法,即在钻石圈中只是一种排法,即把钻石圈翻到一边,所求数为:[(6-1)!]/2=60

一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究. 七.多排问题直排策略 例7.8人排成前后两排,每排4人,其中甲乙在 前排,丁在后排,共有多少排法 解:8人排前后两排,相当于8人坐8把椅子,可以 把椅子排成一排. 先在前4个位置排甲乙两 个特殊元素有____种,再排后4个位置上的 特殊元素有_____种,其余的5人在5个位置 上任意排列有____种,则共有_________种. 一般地,元素分成多排的排列问题,可归结为一排考虑,再分段研究. 前排 后排

练习题 有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是______ 346 甲乙都在前排: 1、都在左面4个座位 =6种 2、都在右面4个座位 同上,6种 3、分列在中间3个的左右 =32种 一共6+6+32=44种 甲乙都在后排: A(22)*(10+9+8+7+6+5+4+3+2+1)=110种 甲乙分列在前后两排 A(22)*12*8=192种 一共44+110+192=346种

八.排列组合混合问题先选后排策略 例8.有5个不同的小球,装入4个不同的盒内, 每盒至少装一个球,共有多少不同的装 法. 解:第一步从5个球中选出2个组成复合元共 有__种方法.再把5个元素(包含一个复合 元素)装入4个不同的盒内有_____种方法. 根据分步计数原理装球的方法共有_____ 解决排列组合混合问题,先选后排是最基本 的指导思想.此法与相邻元素捆绑策略相似 吗?

192 练习题 一个班有6名战士,其中正副班长各1人 现从中选4人完成四种不同的任务,每人 完成一种任务,且正副班长有且只有1人 参加,则不同的选法有________ 种 192

小集团排列问题中,先整体后局部,再结合其它策略进行处理。 九.小集团问题先整体局部策略 例9.用1,2,3,4,5组成没有重复数字的五位数 其中恰有两个偶数夹1,5这两个奇数之 间,这样的五位数有多少个? 解:把1,5,2,4当作一个小集团与3排队   共有____种排法,再排小集团内部共有   _______种排法,由分步计数原理共有   _______种排法. 3 1524 小集团 小集团排列问题中,先整体后局部,再结合其它策略进行处理。

1.计划展出10幅不同的画,其中1幅水彩画,4  幅油画,5幅国画, 排成一行陈列,要求同一  品种的必须连在一起,并且水彩画不在两  端,那么共有陈列方式的种数为_______ 2. 5男生和5女生站成一排照像,男生相邻,女  生也相邻的排法有_______种

十.元素相同问题隔板策略 例10.有10个运动员名额,在分给7个班,每 班至少一个,有多少种分配方案?   班至少一个,有多少种分配方案? 解:因为10个名额没有差别,把它们排成   一排。相邻名额之间形成9个空隙。 在9个空档中选6个位置插个隔板, 可把名额分成7份,对应地分给7个 班级,每一种插板方法对应一种分法 共有___________种分法。 一班 二班 三班 四班 五班 六班 七班

将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用m-1块隔板,插入n个元素排成一排的n-1个空隙中,所有分法数为

练习题 10个相同的球装5个盒中,每盒至少一 有多少装法? 2 .x+y+z+w=100求这个方程组的自然数解 的组数

+ 9 - 9 + 十一.正难则反总体淘汰策略 例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三 个数,使其和为不小于10的偶数,不同的 取法有多少种? 解:这问题中如果直接求不小于10的偶数很 困难,可用总体淘汰法。 这十个数字中有5 个偶数5个奇数,所取的三个数含有3个偶数的取法有____,只含有1个偶数的取法有_____,和为偶数的取法共有_________ + 9 再淘汰和小于10的偶数共___________ - 9 + 符合条件的取法共有___________ 013 015 017 023 025 027 041 045 043

有些排列组合问题,正面直接考虑比较复杂,而它的反面往往比较简捷,可以先求出它的反面,再从整体中淘汰.

练习题 我们班里有43位同学,从中任抽5人,正、 副班长、团支部书记至少有一人在内的 抽法有多少种?

平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以 (n为均分的组数)避免重复计数。 十二.平均分组问题除法策略 例12. 6本不同的书平均分成3堆,每堆2本共有 多少分法? 解: 分三步取书得 种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则 中还有 (AB,EF,CD),(CD,AB,EF),(CD,EF,AB) (EF,CD,AB),(EF,AB,CD)共有 种取法 ,而这些分法仅是(AB,CD,EF)一种分法,故共 有 种分法。 平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以 (n为均分的组数)避免重复计数。

1 将13个球队分成3组,一组5个队,其它两组4 个队, 有多少分法? 2.10名学生分成3组,其中一组4人, 另两组3人 但正副班长不能分在同一组,有多少种不同 的分组方法 (1540) 3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______

+ 十三. 合理分类与分步策略 例13.在一次演唱会上共10名演员,其中8人能 能唱歌,5人会跳舞,现要演出一个2人 唱歌2人伴舞的节目,有多少选派方法? 解: 10演员中有5人只会唱歌,2人只会跳舞 3人为全能演员。 以只会唱歌的5人是否 选上唱歌人员为标准进行研究 只会唱 的5人中没有人选上唱歌人员共有____ 种,只会唱的5人中只有1人选上唱歌人 员________种,只会唱的5人中只有2人 选上唱歌人员有____种,由分类计数 原理共有______________________种。 +

本题还有如下分类标准: *以3个全能演员是否选上唱歌人员为标准 *以3个全能演员是否选上跳舞人员为标准 *以只会跳舞的2人是否选上跳舞人员为标准 都可经得到正确结果 解含有约束条件的排列组合问题,可按元素 的性质进行分类,按事件发生的连续过程分 步,做到标准明确。分步层次清楚,不重不 漏,分类标准一旦确定要贯穿于解题过程的 始终。

27 34 练习题 1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有_______ 1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有_______ 34 2. 3成人2小孩乘船游玩,1号船最多乘3人, 2 号船最多乘2人,3号船只能乘1人,他们任选 2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. 27

十四.构造模型策略 例14. 马路上有编号为1,2,3,4,5,6,7,8,9的 九只路灯,现要关掉其中的3盏,但不能关 掉相邻的2盏或3盏,也不能关掉两端的2 盏,求满足条件的关灯方法有多少种? 解:把此问题当作一个排队模型在6盏 亮灯的5个空隙中插入3个不亮的灯 有________ 种 一些不易理解的排列组合题如果能转化为 非常熟悉的模型,如占位填空模型,排队 模型,装盒模型等,可使问题直观解决

练习题 某排共有10个座位,若4人就坐,每人左右 两边都有空位,那么不同的坐法有多少种? 120

解:从5个球中取出2个与盒子对号有_____种 还剩下3球3盒序号不能对应, 利用实际 操作法,如果剩下3,4,5号球, 3,4,5号盒 十五.实际操作穷举策略 例15.设有编号1,2,3,4,5的五个球和编号1,2 3,4,5的五个盒子,现将5个球投入这五 个盒子内,要求每个盒子放一个球,并且 恰好有两个球的编号与盒子的编号相同,. 有多少投法 解:从5个球中取出2个与盒子对号有_____种 还剩下3球3盒序号不能对应, 利用实际 操作法,如果剩下3,4,5号球, 3,4,5号盒 3号球装4号盒时,则4,5号球有只有1种装法 3号盒 4号盒 5号盒 3 4 5

十五.实际操作穷举策略 例15.设有编号1,2,3,4,5的五个球和编号1,2 3,4,5的五个盒子,现将5个球投入这五 个盒子内,要求每个盒子放一个球,并且 恰好有两个球的编号与盒子的编号相同,. 有多少投法 解:从5个球中取出2个与盒子对号有_____种 还剩下3球3盒序号不能对应, 利用实际 操作法,如果剩下3,4,5号球, 3,4,5号盒 3号球装4号盒时,则4,5号球有只有1种装法, 同理3号球装5号盒时,4,5号球有也 只有1种装法,由分步计数原理有2 种

对于条件比较复杂的排列组合问题,不易用 公式进行运算,往往利用穷举法或画出树状 图会收到意想不到的结果 练习题 同一寝室4人,每人写一张贺年卡集中起来, 然后每人各拿一张别人的贺年卡,则四张 贺年卡不同的分配方式有多少种? (9) 2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则 不同的着色方法有____种 2 1 3 4 5 72

十六. 分解与合成策略 例16. 30030能被多少个不同的偶数整除 分析:先把30030分解成质因数的乘积形式 30030=2×3×5 × 7 ×11×13依题 意可知偶因数必先取2,再从其余5个 因数中任取若干个组成乘积,所有 的偶因数为: 例17.正方体的8个顶点可连成多少对异面 直线

6 解:我们先从8个顶点中任取4个顶点构成四 体共有体共__________ 每个四面体有___ 对异面直线,正方体中的8个顶点可连成 ____________对异面直线 6×58=174 分解与合成策略是排列组合问题的一种最 基本的解题策略,把一个复杂问题分解成几 个小问题逐一解决,然后依据问题分解后的 结构,用分类计数原理和分步计数原理将问 题合成,从而得到问题的答案 ,每个比较复 杂的问题都要用到这种解题策略

十七.化归策略 例18. 25人排成5×5方队,现从中选3人,要 求3人不在同一行也不在同一列,不同的 选法有多少种? 解: 将这个问题退化成9人排成3×3方队,现从中选3人,要求3人不在同一行也不在同一列,有多少选法.这样每行必有1人从其中的一行中选取1人后,把这人所在的行列都划掉,

如此继续下去.从3×3方队中选3人的方法 有___________种。再从5×5方队选出3×3 方队便可解决问题 从5×5方队中选取3行3列有_____选法 所以从5×5方队选不在同一行也不在同 一列的3人有__________________选法。 处理复杂的排列组合问题时可以把一个问题退化成一个简要的问题,通过解决这个简要的问题的解决找到解题方法,从而进下一步解决原来的问题

练习题 某城市的街区由12个全等的矩形区组成 其中实线表示马路,从A走到B的最短路 径有多少种? B A

小结 本节课,我们对有关排列组合的几种常见的解题策略加以复习巩固。排列组合历来是学习中的难点,通过我们平时做的练习题,不难发现排列组合题的特点是条件隐晦,不易挖掘,题目多变,解法独特,数字庞大,难以验证。同学们只有对基本的解题策略熟练掌握。根据它们的条件,我们就可以选取不同的技巧来解决问题.对于一些比较复杂的问题,我们可以将几种策略结合起来应用把复杂的问题简单化,举一反三,触类旁通,进而为后续学习打下坚实的基础。