第七节 第七章 常系数 齐次线性微分方程 基本思路: 求解常系数线性齐次微分方程 转化 求特征方程(代数方程)之根.

Slides:



Advertisements
Similar presentations
探究问题 1 、观察任意一 质点,在做什么运动? 动画课堂 各个质点在各自的平衡 位置附近做机械振动,没 有随波迁移。 结论 1 :
Advertisements

一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第 14 章 常微分方程的 MATLAB 求 解 编者. Outline 14.1 微分方程的基本概念 14.2 几种常用微分方程类型 14.3 高阶线性微分方程 14.4 一阶微分方程初值问题的数值解 14.5 一阶微分方程组和高阶微分方程的数值解 14.6 边值问题的数值解.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
常系数线性微分方程组 §5.3 常系数线性方程组. 常系数线性微分方程组 一阶常系数线性微分方程组 : 本节主要讨论 (5.33) 的基解矩阵的求法.
第三节 二阶线形微分方程 二阶线形齐次微分方程4.3.1 二阶线形齐次微分方程 二阶线形非齐次微分方程4.3.2 二阶线形非齐次微分方程.
高 等 数 学高 等 数 学 内蒙古科技大学公共数学教学部 主编:李淑俊. 引言 第一章 函数与极限 第二章 导数与微分 第三章 微分中值定理与导数的应用 第四章 不定积分 第五章 定积分 第六章 定积分的应用 目 录 目录 下一页 目录 下一页.
积 分 的 应 用 不定积分的应用 定积分的应用 第四章 微分方程 不定积分的应用 第 一 节第 一 节 学习重点 微分方程的概念 一阶微分方程的求解.
一、会求多元复合函数一阶偏导数 多元复合函数的求导公式 学习要求: 二、了解全微分形式的不变性.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
4.3 一阶线性微分方程 一、案例 二、概念和公式的引出 三、进一步的练习 四、实训. 一、案例 [ 溶液的混合 ] 一容器内盛有 50L 的盐水溶液,其中含有 10g 的盐.现将每升含盐 2g 的溶液以每分钟 5L 的速度注 入容器,并不断进行搅拌,使混合液迅速达到均匀, 同时混合液以 3L/min.
一、可分离变量的微分方程 可分离变量的微分方程. 解法 为微分方程的解. 分离变量法 §2 一阶常微分方程.
高等数学 重庆交通学院 (下册总复习) 冯春 第八章 多元函数微分学 第九章 重 积 分 第十 章 曲线与曲面积分 第十一章 无穷级数 第七章 空间解析几何 第十二章 微分方程 目 录.
§3.4 空间直线的方程.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
3.4 空间直线的方程.
1.非线性振动和线性振动的根本区别 §4-2 一维非线性振动及其微分方程的近似解法 方程
代数方程总复习 五十四中学 苗 伟.
静电场的Laplace方程和Poisson方程
18.2一元二次方程的解法 (公式法).
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
5.3 二阶微分方程 主要内容 1.可降阶的二阶微分方程 2.二阶常系数线性微分方程.
背 景 1676年,贝努利(Bernoulli)致牛顿的信中第一次提出微分方程,直到十八世纪中期,微分方程才成为一门独立的学科.微分方程建立后,立即成为探索现实世界的重要工具.
第三章 函数逼近 — 最佳平方逼近.
第六章 微分方程 — 积分问题 推广 — 微分方程问题.
复习 齐次方程 齐次方程的解法 化为可分离变量的方程然后求解. 可化为齐次方程的方程 其它情况, 令 化为齐次方程;
第十二章 微分方程 — 积分问题 推广 — 微分方程问题.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
第3章线性时不变(LTI)连续系统的时域分析
§5.4 小振动 (problem of small oscillations)
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或. 一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第一章 函数与极限.
第七章 数学物理方程及其定解问题 数学物理方程的导出 定解条件 数学物理方程的分类 达朗贝尔公式 定解问题.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第三十五讲 二阶常系数线性微分方程.
§4.3 常系数线性方程组.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第九章 微分方程与差分方程简介 §9.1 微分方程的基本概念 §9.2 一阶微分方程 §9.3 高阶常系数线性微分方程
第四模块 微积分学的应用 第十三节 二阶常系数线性微分方程 一、二阶线性微分方程解的结构 二、二阶常系数线性微分方程的解法 三、应用举例.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
第十二章 分离变量法 本章中心内容 本章基本要求 用分离变量法求解各种有界问题; 掌握有界弦的自由振动解及其物理意义
高等数学 西华大学应用数学系朱雯.
第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: 第四节 线性方程组解的结构 前面我们已经用初等变换的方法讨论了线性方程组的解法, 并建立了两个重要定理: (1) n个未知数的齐次线性方程组Ax.
Partial Differential Equations §2 Separation of variables
6.4不等式的解法举例(1) 2019年4月17日星期三.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
解 简 易 方 程.
用户名为学号,登录密码为本学期选课密码。注意:选课密码要大写!
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
直线和圆的位置关系 ·.
电路原理教程 (远程教学课件) 浙江大学电气工程学院.
第十八章 单自由度系统的振动.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
第四节 第七章 一阶线性微分方程 一、一阶线性微分方程 *二、伯努利方程.
§2 方阵的特征值与特征向量.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
5.2.1 变量可分离的微分方程 形如 的微分方程成为变量可 分离的微分方程. 解法 分离变量法 5.2 一阶微分方程(80)
实验四 利用Mathematica解方程 实验目的:学会正确使用Solve和FindRoot及DSolve解各类方程 预备知识:
《偏微分方程》第一章 绪论 第一章 绪论 1.1.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
Presentation transcript:

第七节 第七章 常系数 齐次线性微分方程 基本思路: 求解常系数线性齐次微分方程 转化 求特征方程(代数方程)之根

二阶常系数齐次线性微分方程: ① 和它的导数只差常数因子, ( r 为待定常数 ), 代入①得 所以令①的解为 ② 称②为微分方程①的特征方程, 其根称为特征根. 1. 当 时, ②有两个相异实根 则微分 方程有两个线性无关的特解: 因此方程的通解为

2. 当 时, 特征方程有两个相等实根 则微分方程有一个特解 设另一特解 ( u (x) 待定) 代入方程得: 是特征方程的重根 取 u = x , 则得 因此原方程的通解为 特征方程

3. 当 时, 特征方程有一对共轭复根 这时原方程有两个复数解: 利用解的叠加原理 , 得原方程的线性无关特解: 因此原方程的通解为 特征方程

小结: 特征方程: 特 征 根 通 解 实根 以上结论可推广到高阶常系数线性微分方程 .

推广: 特征方程: 若特征方程含 k 重实根 r , 则其通解中必含对应项 若特征方程含 k 重复根 则其通解中必含 对应项

例1. 的通解. 解: 特征方程 特征根: 因此原方程的通解为 例2. 求解初值问题 解: 特征方程 有重根 因此原方程的通解为 利用初始条件得 于是所求初值问题的解为

例3. 质量为m的物体自由悬挂在一端固定的弹簧上, 在无外力作用下做自由运动, 取其平衡位置为原点建 立坐标系如图, 设 t = 0 时物体的位置为 初始 求物体的运动规律 解: 由第六节例1 (P323) 知, 位移满足 因此定解问题为

1) 无阻尼自由振动情况 ( n = 0 ) 方程: 特征方程: 特征根: 方程通解: 利用初始条件得: 故所求特解:

解的特征: 简谐振动 A: 振幅,  : 初相, 周期: 固有频率 (仅由系统特性确定)

2) 有阻尼自由振动情况 方程: 特征方程: 特征根: 这时需分如下三种情况进行讨论: 小阻尼: n < k 解的特征 三个按钮“解的特征”分别指向自定义放映: “小阻尼”,“大阻尼”,“临界阻尼”,放映完毕自动返回.若不能调用,则需要重新定义这些自定义放映,并重新连接. 大阻尼: n > k 解的特征 临界阻尼: n = k 解的特征

小阻尼自由振动解的特征 : 由初始条件确定任意常数后变形 运动周期: 振幅: 衰减很快, 随时间 t 的增大物体 趋于平衡位置.

大阻尼解的特征: ( n > k ) 1) 无振荡现象; 2) 对任何初始条件 即随时间 t 的增大物体总趋于平衡位置. 此图参数:

临界阻尼解的特征 : ( n = k ) 任意常数由初始条件定, 最多只与 t 轴交于一点; 2) 无振荡现象 ; 即随时间 t 的增大物体总趋于平衡位置. 此图参数:

例4. 的通解. 解: 特征方程 特征根: 因此原方程通解为 例5. 解: 特征方程: 特征根 : 原方程通解: (不难看出, 原方程有特解

例6. 解: 特征方程: 即 其根为 方程通解 :

例7. 解: 特征方程: 特征根为 则方程通解 :

内容小结 特征根: (1) 当 时, 通解为 (2) 当 时, 通解为 (3) 当 时, 通解为 可推广到高阶常系数线性齐次方程求通解 .

作业 P340 1 (3) , (6) , (10) ; 2 (2) , (3) , (6) ; 3 思考与练习 求方程 的通解 . 答案: 通解为 通解为 通解为 作业 P340 1 (3) , (6) , (10) ; 2 (2) , (3) , (6) ; 3 第八节

备用题 为特解的 4 阶常系数线性齐次微分方程, 并求其通解 . 解: 根据给定的特解知特征方程有根 : 因此特征方程为 即 故所求方程为 其通解为