第六章 微分方程 — 积分问题 推广 — 微分方程问题.

Slides:



Advertisements
Similar presentations
一、 一阶线性微分方程及其解法 二、 一阶线性微分方程的简单应用 三、 小结及作业 §6.2 一阶线性微分方程.
Advertisements

第五节 全微分方程 一、全微分方程及其求法 二、积分因子法 三、一阶微分方程小结. 例如 所以是全微分方程. 定义 : 则 若有全微分形式 一、全微分方程及其求法.
第一节 不定积分的概念及其 计算法概述 一、原函数与不定积分的概念 二、基本积分表 三、不定积分的性质及简单计算 四、小结.
目录 上页 下页 返回 结束 习题课 一、导数和微分的概念及应用 二、导数和微分的求法 导数与微分 第二章.
第 14 章 常微分方程的 MATLAB 求 解 编者. Outline 14.1 微分方程的基本概念 14.2 几种常用微分方程类型 14.3 高阶线性微分方程 14.4 一阶微分方程初值问题的数值解 14.5 一阶微分方程组和高阶微分方程的数值解 14.6 边值问题的数值解.
2.8 函数的微分 1 微分的定义 2 微分的几何意义 3 微分公式与微分运算法则 4 微分在近似计算中的应用.
第八章 第四节 机动 目录 上页 下页 返回 结束 一个方程所确定的隐函数 及其导数 隐函数的微分法.
常系数线性微分方程组 §5.3 常系数线性方程组. 常系数线性微分方程组 一阶常系数线性微分方程组 : 本节主要讨论 (5.33) 的基解矩阵的求法.
第三节 二阶线形微分方程 二阶线形齐次微分方程4.3.1 二阶线形齐次微分方程 二阶线形非齐次微分方程4.3.2 二阶线形非齐次微分方程.
积 分 的 应 用 不定积分的应用 定积分的应用 第四章 微分方程 不定积分的应用 第 一 节第 一 节 学习重点 微分方程的概念 一阶微分方程的求解.
2.6 隐函数微分法 第二章 第二章 二、高阶导数 一、隐式定义的函数 三、可微函数的有理幂. 一、隐函数的导数 若由方程 可确定 y 是 x 的函数, 由 表示的函数, 称为显函数. 例如, 可确定显函数 可确定 y 是 x 的函数, 但此隐函数不能显化. 函数为隐函数. 则称此 隐函数求导方法.
1 热烈欢迎各位朋友使用该课件! 广州大学数学与信息科学学院. 2 工科高等数学 广州大学袁文俊、邓小成、尚亚东.
4.3 一阶线性微分方程 一、案例 二、概念和公式的引出 三、进一步的练习 四、实训. 一、案例 [ 溶液的混合 ] 一容器内盛有 50L 的盐水溶液,其中含有 10g 的盐.现将每升含盐 2g 的溶液以每分钟 5L 的速度注 入容器,并不断进行搅拌,使混合液迅速达到均匀, 同时混合液以 3L/min.
2.5 函数的微分 一、问题的提出 二、微分的定义 三、可微的条件 四、微分的几何意义 五、微分的求法 六、小结.
一、可分离变量的微分方程 可分离变量的微分方程. 解法 为微分方程的解. 分离变量法 §2 一阶常微分方程.
第二章 导数与微分 一. 内 容 要 点 二. 重 点 难 点 三. 主 要 内 容 四. 例 题与习题.
经济数学 第四章 不定积分. 4.1 不定积分的概念与性质 4.2 不定积分的性质 4.3 不定积分的换元积分法 4.4 不定积分的分部积分法.
8.1 不定积分的概念和基本积分公式  原函数和不定积分  基本积分公式表  不定积分的线性运算法则 第八章 不定积分.
第八章 向量代数 空间解析几何 第五节 空间直线及其方程 一、空间直线的点向式方程 和参数方程 二、空间直线的一般方程 三、空间两直线的夹角.
1.非线性振动和线性振动的根本区别 §4-2 一维非线性振动及其微分方程的近似解法 方程
《解析几何》 乐山师范学院 0 引言 §1 二次曲线与直线的相关位置.
第五章 二次型. 第五章 二次型 知识点1---二次型及其矩阵表示 二次型的基本概念 1. 线性变换与合同矩阵 2.
一、二阶行列式的引入 用消元法解二元线性方程组. 一、二阶行列式的引入 用消元法解二元线性方程组.
5.3 二阶微分方程 主要内容 1.可降阶的二阶微分方程 2.二阶常系数线性微分方程.
背 景 1676年,贝努利(Bernoulli)致牛顿的信中第一次提出微分方程,直到十八世纪中期,微分方程才成为一门独立的学科.微分方程建立后,立即成为探索现实世界的重要工具.
例7-1 荡木用两条等长的钢索平行吊起,钢索的摆动规律为j= j 0sin(pt/4)。试求当t=0和t=2s时,荡木中点M的速度和加速度。
第三章 函数逼近 — 最佳平方逼近.
第七节 第七章 常系数 齐次线性微分方程 基本思路: 求解常系数线性齐次微分方程 转化 求特征方程(代数方程)之根.
复习 齐次方程 齐次方程的解法 化为可分离变量的方程然后求解. 可化为齐次方程的方程 其它情况, 令 化为齐次方程;
第十二章 微分方程 — 积分问题 推广 — 微分方程问题.
第一章 行列式 第五节 Cramer定理 设含有n 个未知量的n个方程构成的线性方程组为 (Ⅰ) 由未知数的系数组成的n阶行列式
例题 教学目的: 微积分基本公式 教学重点: 牛顿----莱布尼兹公式 教学难点: 变上限积分的性质与应用.
恰当方程(全微分方程) 一、概念 二、全微分方程的解法.
高等数学电子教案 第五章 定积分 第三节 微积分基本定理.
第五节 微积分基本公式 、变速直线运动中位置函数与速度 函数的联系 二、积分上限函数及其导数 三、牛顿—莱布尼茨公式.
一、原函数与不定积分 二、不定积分的几何意义 三、基本积分公式及积分法则 四、牛顿—莱布尼兹公式 五、小结
第二节 微积分基本公式 1、问题的提出 2、积分上限函数及其导数 3、牛顿—莱布尼茨公式 4、小结.
数 学 分 析 第九章 定积分 第二节 微积分学基本公式 主讲:师建国.
一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或. 一阶微分方程的一般形式是 一阶微分方程的对称形式是 一阶微分方程的显式形式是 或.
第四章 函数的积分学 第六节 微积分的基本公式 一、变上限定积分 二、微积分的基本公式.
复习 定积分的实质: 特殊和式的极限 2. 定积分的思想和方法 分割,近似, 求和,取极限 3. 定积分的性质
第四章 一元函数的积分 §4.1 不定积分的概念与性质 §4.2 换元积分法 §4.3 分部积分法 §4.4 有理函数的积分
第一章 函数与极限.
高等数学 第三十四讲 函数的微分 主讲教师:陈殿友 总课时: 128.
第四节 一阶线性微分方程 线性微分方程 伯努利方程 小结、作业 1/17.
第三节 格林公式及其应用(2) 一、曲线积分与路径无关的定义 二、曲线积分与路径无关的条件 三、二元函数的全微分的求积 四、小结.
高等院校非数学类本科数学课程 大 学 数 学(一) —— 一元微积分学 第三十五讲 二阶常系数线性微分方程.
§4.3 常系数线性方程组.
2-7、函数的微分 教学要求 教学要点.
第5章 §5.3 定积分的积分法 换元积分法 不定积分 分部积分法 换元积分法 定积分 分部积分法.
第九章 微分方程与差分方程简介 §9.1 微分方程的基本概念 §9.2 一阶微分方程 §9.3 高阶常系数线性微分方程
第四模块 微积分学的应用 第十三节 二阶常系数线性微分方程 一、二阶线性微分方程解的结构 二、二阶常系数线性微分方程的解法 三、应用举例.
§2 求导法则 2.1 求导数的四则运算法则 下面分三部分加以证明, 并同时给出相应的推论和例题 .
高等数学 西华大学应用数学系朱雯.
人教版五年级数学上册第四单元 解方程(一) 马郎小学 陈伟.
Partial Differential Equations §2 Separation of variables
第16讲 相似矩阵与方阵的对角化 主要内容: 1.相似矩阵 2. 方阵的对角化.
§6.7 子空间的直和 一、直和的定义 二、直和的判定 三、多个子空间的直和.
第一节 不定积分的概念与性质 一、原函数与不定积分的概念 二、不定积分的几何意义 三、基本积分表 四、不定积分的性质 五、小结 思考题.
第三章 函数的微分学 第二节 导数的四则运算法则 一、导数的四则运算 二、偏导数的求法.
第15讲 特征值与特征向量的性质 主要内容:特征值与特征向量的性质.
第四节 第七章 一阶线性微分方程 一、一阶线性微分方程 *二、伯努利方程.
§2 方阵的特征值与特征向量.
第三节 函数的微分 3.1 微分的概念 3.2 微分的计算 3.3 微分的应用.
φ=c1cosωt+c2sinωt=Asin(ωt+θ).
5.2.1 变量可分离的微分方程 形如 的微分方程成为变量可 分离的微分方程. 解法 分离变量法 5.2 一阶微分方程(80)
第四章 函数的 积分学 第七节 定积分的换元积分法     与分部积分法 一、定积分的换元积分法 二、定积分的分部积分法.
第一节 不定积分的概念与性质 原函数与不定积分的概念 基本积分表 不定积分的性质 小结、作业 1/22.
第三章 线性方程组 §4 n维向量及其线性相关性(续7)
一元一次方程的解法(-).
Presentation transcript:

第六章 微分方程 — 积分问题 推广 — 微分方程问题

6.1 微分方程的基本概念 几何问题 引例 物理问题 微分方程的基本概念 机动 目录 上页 下页 返回 结束

6.1.1 引出微分方程的两个实例 引例1. 一曲线通过点(1,2) ,在该曲线上任意点处的 切线斜率为 2x , 求该曲线的方程 . 6.1.1 引出微分方程的两个实例 引例1. 一曲线通过点(1,2) ,在该曲线上任意点处的 切线斜率为 2x , 求该曲线的方程 . 解: 设所求曲线方程为 y = y(x) , 则有如下关系式: ① ② 由 ① 得 (C为任意常数) 由 ② 得 C = 1, 因此所求曲线方程为

说明: 利用这一规律可求出制动后多少时间列车才 引例2. 列车在平直路上以 的速度行驶, 制动时 获得加速度 求制动后列车的运动规律. 解: 设列车在制动后 t 秒行驶了s 米 , 即求 s = s (t) . 已知 由前一式两次积分, 可得 利用后两式可得 P321.例2 因此所求运动规律为 说明: 利用这一规律可求出制动后多少时间列车才 能停住 , 以及制动后行驶了多少路程 . 机动 目录 上页 下页 返回 结束

6.1.2 微分方程 含未知函数及其导数的方程叫做微分方程 . 常微分方程 (本章内容) 分类 偏微分方程 6.1.2 微分方程 含未知函数及其导数的方程叫做微分方程 . 常微分方程 (本章内容) 分类 偏微分方程 方程中所含未知函数导数的最高阶数叫做微分方程 的阶. 一般地 , n 阶常微分方程的形式是 ( n 阶显式微分方程) 或 机动 目录 上页 下页 返回 结束

微分方程的解 — 使方程成为恒等式的函数. 通解 — 解中所含独立的任意常数的个数与方程 的阶数相同. 特解 — 不含任意常数的解, 其图形称为积分曲线. 初始条件 — 确定通解中任意常数的条件. n 阶方程的初始条件(或初值条件): 引例2 引例1 通解: 特解: 机动 目录 上页 下页 返回 结束

例1. 验证函数 是微分方程 的解, 并求满足初始条件 的特解 . 解: 这说明 是方程的解 . 是两个独立的任意常数, 故它是方程的通解. 利用初始条件易得: 故所求特解为 机动 目录 上页 下页 返回 结束

例2. 已知曲线上点 P(x, y) 处的法线与 x 轴交点为 Q 且线段 PQ 被 y 轴平分, 求所满足的微分方程 . 解: 如图所示, 点 P(x, y) 处的法线方程为 令 Y = 0 , 得 Q 点的横坐标 即

6.2 常见微分方程的解法 6.2.1 可分离变量微分方程 可分离变量方程 转化 解分离变量方程 机动 目录 上页 下页 返回 结束

分离变量方程的解法: 分离变量: 两边积分: 机动 目录 上页 下页 返回 结束

说明: 在求解过程中每一步不一定是同解变形, 例1. 求微分方程 的通解. 解: 分离变量得 说明: 在求解过程中每一步不一定是同解变形, 两边积分 因此可能增、 减解. 或 得 即 ( C 为任意常数 ) ( 此式含分离变量时丢失的解 y = 0 ) 机动 目录 上页 下页 返回 结束

例2. 解初值问题 解: 分离变量得 两边积分得 即 ( C 为任意常数 ) 由初始条件得 C = 1, 故所求特解为 解: 分离变量得 两边积分得 即 ( C 为任意常数 ) 由初始条件得 C = 1, 故所求特解为 机动 目录 上页 下页 返回 结束

例3. 求下述微分方程的通解: 解: 令 则 故有 即 解得 ( C 为任意常数 ) 所求通解: 机动 目录 上页 下页 返回 结束

练习: 解: 分离变量 即 ( C < 0 )

已知放射性元素铀的衰变速度与当时未衰变原 例4. 已知放射性元素铀的衰变速度与当时未衰变原 子的含量 M 成正比, 已知 t = 0 时铀的含量为 求在 衰变过程中铀含量 M(t) 随时间 t 的变化规律. 解: 根据题意, 有 (初始条件) 对方程分离变量, 然后积分: 即 利用初始条件, 得 故所求铀的变化规律为 机动 目录 上页 下页 返回 结束

设降落伞从跳伞塔下落后所受空气阻力与速度 例5. 设降落伞从跳伞塔下落后所受空气阻力与速度 成正比, 并设降落伞离开跳伞塔时( t = 0 ) 速度为0, 求 降落伞下落速度与时间的函数关系. 解: 根据牛顿第二定律列方程 初始条件为 对方程分离变量, 然后积分 : 得 t 足够大时 利用初始条件, 得 代入上式后化简, 得特解 机动 目录 上页 下页 返回 结束

例6. 有高 1m 的半球形容器, 水从它的底部小孔流出, 小孔横截面积 开始时容器内盛满了水, 求水 从小孔流出过程中, 容器里水面的高度 h 随时间 t 的变 化规律. 解: 由水力学知, 水从孔口流出的流量为 流量系数 孔口截面面积 重力加速度 即 设在 内水面高度由 h 降到 机动 目录 上页 下页 返回 结束

对应下降体积 因此得微分方程定解问题: 将方程分离变量: 机动 目录 上页 下页 返回 结束

因此容器内水面高度 h 与时间 t 有下列关系: 两端积分, 得 利用初始条件, 得 因此容器内水面高度 h 与时间 t 有下列关系: 机动 目录 上页 下页 返回 结束

内容小结 1. 微分方程的概念 微分方程; 阶; 定解条件; 解; 通解; 特解 说明: 通解不一定是方程的全部解 . 例如, 方程 有解 说明: 通解不一定是方程的全部解 . 例如, 方程 有解 y = – x 及 y = C 后者是通解 , 但不包含前一个解 . 2. 可分离变量方程的求解方法: 分离变量后积分; 根据定解条件定常数 . 机动 目录 上页 下页 返回 结束

找出事物的共性及可贯穿于全过程的规律列方程. 3. 解微分方程应用题的方法和步骤 找出事物的共性及可贯穿于全过程的规律列方程. 常用的方法: 1) 根据几何关系列方程 ( 如: P263,5(2) ) 2) 根据物理规律列方程 ( 如: 例4 , 例 5 ) 3) 根据微量分析平衡关系列方程 ( 如: 例6 ) (2) 利用反映事物个性的特殊状态确定定解条件. (3) 求通解, 并根据定解条件确定特解. 机动 目录 上页 下页 返回 结束

思考与练习 求下列方程的通解 : 提示: (1) 分离变量 (2) 方程变形为 机动 目录 上页 下页 返回 结束

6.2.2 齐次方程 形如 的方程叫做齐次方程 . 解法: 令 代入原方程得 分离变量: 两边积分, 得 积分后再用 代替 u, 6.2.2 齐次方程 形如 的方程叫做齐次方程 . 解法: 令 代入原方程得 分离变量: 两边积分, 得 积分后再用 代替 u, 便得原方程的通解.

例1. 解微分方程 解: 代入原方程得 分离变量 两边积分 得 故原方程的通解为 ( C 为任意常数 ) ( 当 C = 0 时, y = 0 也是方程的解) 机动 目录 上页 下页 返回 结束

说明: 显然 x = 0 , y = 0 , y = x 也是原方程的解, 但在 例2. 解微分方程 解: 则有 分离变量 积分得 即 代回原变量得通解 (C 为任意常数) 说明: 显然 x = 0 , y = 0 , y = x 也是原方程的解, 但在 求解过程中丢失了. 机动 目录 上页 下页 返回 结束

6.2.3 一阶线性微分方程 一阶线性微分方程标准形式: 若 Q(x)  0, 称为齐次方程 ; 若 Q(x)  0, 6.2.3 一阶线性微分方程 一阶线性微分方程标准形式: 若 Q(x)  0, 称为齐次方程 ; 若 Q(x)  0, 称为非齐次方程 . 1. 解齐次方程 分离变量 两边积分得 故通解为 机动 目录 上页 下页 返回 结束

2. 解非齐次方程 则 用常数变易法: 作变换 即 对应齐次方程通解 两端积分得 故原方程的通解 即 齐次方程通解 非齐次方程特解 机动 目录 上页 下页 返回 结束

例2. 解方程 即 解: 先解 积分得 即 则 用常数变易法求特解. 令 代入非齐次方程得 解得 故原方程通解为 解: 先解 即 积分得 即 则 用常数变易法求特解. 令 代入非齐次方程得 解得 故原方程通解为 机动 目录 上页 下页 返回 结束

6.2.4 伯努利 ( Bernoulli )方程 伯努利方程的标准形式: 解法: 除方程两边 , 得 令 求出此方程通解后, 运行时, 点击相片, 或按钮“伯努利”, 可显示伯努利简介,并自动返回. 令 (线性方程) 求出此方程通解后, 换回原变量即得伯努利方程的通解.

例2. 求方程 的通解. 则方程变形为 解: 令 其通解为 将 代入, 得原方程通解: 机动 目录 上页 下页 返回 结束

内容小结 1. 一阶线性方程 方法1 先解齐次方程 , 再用常数变易法. 方法2 用通解公式 2. 伯努利方程 化为线性方程求解. 方法1 先解齐次方程 , 再用常数变易法. 方法2 用通解公式 2. 伯努利方程 化为线性方程求解. 机动 目录 上页 下页 返回 结束

思考与练习 判别下列方程类型: 提示: 可分离 变量方程 齐次方程 线性方程 线性方程 伯努利方程 机动 目录 上页 下页 返回 结束

伯努利(1654 – 1705) 瑞士数学家, 他家祖孙三代出过十多 位数学家. 1694年他首次给出了直角坐 标和极坐标下的曲率半径公式, ( 雅各布第一 · 伯努利 ) 瑞士数学家, 他家祖孙三代出过十多 位数学家. 1694年他首次给出了直角坐 标和极坐标下的曲率半径公式, 1695年 年提出了著名的伯努利方程, 1713年出 版了他的巨著《猜度术》, 这是组合数学与概率论史 上的一件大事, 书中给出的伯努利数在很多地方有用, 而伯努利定理则是大数定律的最早形式. 此外, 他对 双纽线, 悬链线和对数螺线都有深入的研究 .

6.2.6 二阶常系数线性微分方程 二阶线性微分方程的一般形式 二阶线性齐次微分方程

1、二阶线性微分方程解的结构 是二阶线性齐次方程 定理1. 的两个解, 也是该方程的解. 证: 代入方程左边, 得 (叠加原理) 证毕 机动 目录 上页 下页 返回 结束

说明: 不一定是所给二阶方程的通解. 例如, 是某二阶齐次方程的解, 则 也是齐次方程的解 但是 并不是通解 为解决通解的判别问题, 下面引入函数的线性相关与 线性无关概念. 机动 目录 上页 下页 返回 结束

定义: 是定义在区间 I 上的 n 个函数, 若存在不全为 0 的常数 使得 则称这 n个函数在 I 上线性相关, 否则称为线性无关. 例如, 在( ,  )上都有 故它们在任何区间 I 上都线性相关;

两个函数在区间 I 上线性相关与线性无关的充要条件: 存在不全为 0 的 使 ( 无妨设 线性无关 常数 思考: 中有一个恒为 0, 则 必线性 相关 机动 目录 上页 下页 返回 结束

定理 2. 是二阶线性齐次方程 的两个线性无关特解, 则 数) 是该方程的通解. 例如, 方程 有特解 且 故方程的通解为 常数,

定理 3. 是二阶非齐次方程 ① 则 的一个特解, Y (x) 是相应齐次方程的通解, ② 是非齐次方程的通解 . 证: 将 证: 将 代入方程①左端, 得 运行时, 点击按钮“复习”, 可显示一阶线性方程解的结构. 复习 目录 上页 下页 返回 结束

是非齐次方程的解, 又Y 中含有 两个独立任意常数, 因而 ② 也是通解 . 例如, 方程 有特解 对应齐次方程 有通解 因此该方程的通解为 证毕 例如, 方程 有特解 对应齐次方程 有通解 因此该方程的通解为 机动 目录 上页 下页 返回 结束

2、 二阶常系数齐次线性微分方程: ① 特征方程: 特 征 根 通 解 实根

例1. 的通解. 解: 特征方程 特征根: 因此原方程的通解为 例2. 求解初值问题 解: 特征方程 有重根 因此原方程的通解为 解: 特征方程 特征根: 因此原方程的通解为 例2. 求解初值问题 解: 特征方程 有重根 因此原方程的通解为 利用初始条件得 于是所求初值问题的解为 机动 目录 上页 下页 返回 结束

6.2.7 二阶常系数非齐次 线性微分方程 一、 二、

二阶常系数线性非齐次微分方程 : ① 根据解的结构定理 , 其通解为 非齐次方程特解 齐次方程通解 求特解的方法 — 待定系数法 根据 f (x) 的特殊形式 , 的待定形式, 代入原方程比较两端表达式以确定待定系数 . 机动 目录 上页 下页 返回 结束

一、  为实数 , 为 m 次多项式 . 设特解为 其中 为待定多项式 , 代入原方程 , 得 (1) 若  不是特征方程的根, 则取 其中 为待定多项式 , 代入原方程 , 得 (1) 若  不是特征方程的根, 则取 Q (x) 为 m 次待定系数多项式 从而得到特解 形式为

(2) 若 是特征方程的单根 , 即 为m 次多项式, 故特解形式为 (3) 若  是特征方程的重根 , 即 是 m 次多项式, 故特解形式为

例1. 的一个特解. 解: 本题 而特征方程为 不是特征方程的根 . 设所求特解为 代入方程 : 比较系数, 得 于是所求特解为 机动 目录 上页 下页 返回 结束

例2. 的通解. 解: 本题 特征方程为 其根为 对应齐次方程的通解为 设非齐次方程特解为 代入方程得 比较系数, 得 因此特解为 所求通解为 机动 目录 上页 下页 返回 结束