1.1.3 四种命题的相互关系.

Slides:



Advertisements
Similar presentations
《解析几何》 -Chapter 3 §7 空间两直线的相关位置.
Advertisements

平行四边形的判定 新海实验中学苍梧校区 王欣.
10.2 立方根.
命题与四种命题 高二数学 选修2-1 第一章 常用逻辑用语.
高二数学 选修2-1(理) 四种命题的关系 湖南省汉寿县第三中学 制作人:艾镇南.
四种命题 2 垂直.
常用逻辑用语复习 知识网络 常用逻辑用语 命题及其关系 简单的逻辑联结词 全称量词与存在量词 四种命题 充分条件与必要条件 量词 全称量词 存在量词 含有一个量词的否定 或 且 非或 并集 交集 补集 运算.
常用逻辑用语 之命题及其关系 高州市第一中学 曾静.
1.1.1命题及其关系.
事例:主人邀请张三、李四、王五三个人吃饭聊天,时间到了,只有张三和李四两人准时赶到,王五打来电话说:“临时有急事,不能来了。”主人听了随口说了句:“你看看,该来的没有来。”张三听了,脸色一沉,起来一声不吭地走了;主人愣了片刻,又道:“哎,不该走的又走了。”李四听了大怒,拂袖而去。你能用逻辑学原理解释这两人离去的原因吗?
简易逻辑.
简易逻辑.
1.1.2 四种命题及其关系 1.了解命题的逆命题、否命题和逆否命题,并会写出一个 命题的逆命题、否命题和逆否命题.
四种命题的相互关系.
1.1命题及其关系(二) 四种命题的相互关系 洞口三中 方锦昌 手机:
常用逻辑用语 第一章 “数学是思维的科学” 逻辑是研究思维形式和规律的科学. 逻辑用语是我们必不可少的工具.
1.1.2四种命题 1.1.3四种命题间的相互关系.
1.1.3四种命题的相互关系 高二数学 选修2-1 第一章 常用逻辑用语.
常用逻辑用语复习课 李娟.
热烈欢迎专家光临指导!!.
常用逻辑用语 1.1 命题及其关系 命题的相互关系.
命题 高中数学选修1-1 第一章 常用逻辑用语 主讲:刘小苗.
常用逻辑用语小结 张园园.
1.2.1 充分条件与必要条件.
命题及其关系 四种命题.
第2讲 命题及其关系、充要条件.
余角、补角.
初中数学 七年级(上册) 6.3 余角、补角、对顶角(1).
探索三角形相似的条件(2).
初中数学八年级下册 (苏科版) 10.4 探索三角形 相似的条件(2).
§ 平行四边形的性质 授课教师: 杨 娟 班 级: 初二年级.
在数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。     
知识回顾: 1. 平行四边形具有哪些性质? 平行四边形的性质: 1、边:平行四边形对边平行且相等。 2、角:平行四边形对角相等,邻角互补。
第十八章 平行四边形 18.1 平行四边形 (第2课时) 湖北省赤壁市教学研究室 郑新民
1.1特殊的平行四边形 1.1菱形.
2.1.2 空间中直线与直线 之间的位置关系.
平行四边形的性质 灵寿县第二初级中学 栗 彦.
2.3.1 直线与平面垂直的判定.
实数与向量的积.
正方形 ——计成保.
19.2 证明举例(2) —— 米 英.
2.3等腰三角形的性质定理 1.
2.6 直角三角形(二).
D B A C 菱形的判定 苏州学府中学 金鑫.
⑴当∠MBN绕点B旋转到AE=CF时(如图1),比较AE+CF与EF的大小关系,并证明你的结论。
3.4 圆心角(1).
3.3 垂径定理 第2课时 垂径定理的逆定理.
直线和平面垂直的性质定理 (高中数学课件) 伯阳双语数学科组 张馥雅.
八年级 上册 第十三章 轴对称 等腰三角形的判定 湖北省通山县教育局教研室 袁观六.
冀教版八年级下册 22、2平行四边形的判定(2) 东城中学 孙雅力.
2.6 直角三角形(1).
数学的天地里,重要的不是我们知道什么,而是我们怎么知道什么。      ——毕达哥拉斯
人教版高一数学上学期 第一章第1.7节 四种命题(2)
平行线的判定 1.
九年级数学(上) 第一章 特殊平行四边形 2.正方形的性质与判定—判定.
反证法.
§ 正方形练习⑵ 正方形 本资料来自于资源最齐全的21世纪教育网
空间平面与平面的 位置关系.
2.2直接证明(一) 分析法 综合法.
平行四边形的性质 鄢陵县彭店一中 赵二歌.
轴对称在几何证明及计算中的应用(1) ———角平分线中的轴对称.
高中数学必修 平面向量的基本定理.
直线的倾斜角与斜率.
9.5空间向量及其运算 2.共线向量与共面向量 淮北矿业集团公司中学 纪迎春.
6.3正方形. 6.3正方形 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。 1. 正方形的定义 有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
高中数学 选修2-2  2. 2.1 直接证明.
18.2 勾股定理的逆定理(2).
5.1 相交线 (5.1.2 垂线).
正方形的性质.
1.2.2 充要条件 高二数学 选修 1-1 第一章 常用逻辑用语.
Presentation transcript:

1.1.3 四种命题的相互关系

1、互逆命题:如果第一个命题的条件(或题设)是第二个命题的结论,且第一个命题的结论是第二个命题的条件,那么这两个命题叫互逆命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆命题。 三个概念 2、互否命题:如果第一个命题的条件和结论是第二个命题的条件和结论的否定,那么这两个命题叫做互否命题。如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题。 3、互为逆否命题:如果第一个命题的条件和结论分别是第二个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题。

原命题: 若p 则q 逆命题: 若q 则p 否命题: 若 p 则 q 逆否命题: 若 q 则 p

观察与思考 ? 你能说出其中任意两个命题之间的关系吗?

四种命题的真假 看下面的例子: 1)原命题:若x=2或x=3, 则x2-5x+6=0。 (真) 2)原命题:若a=0, 则ab=0。 (真) 逆命题:若ab=0, 则a=0。 (假) 否命题:若a≠ 0, 则ab≠0。 (假) (真) 逆否命题:若ab≠0,则a≠0。 (假) 3) 原命题:若a > b, 则 ac2>bc2。 (真) 逆命题:若ac2>bc2,则a>b。 (真) 否命题:若a≤b,则ac2≤bc2。 (假) 逆否命题:若ac2≤bc2,则a≤b。

1、四种命题之间的 关系 原命题 逆命题 否命题 逆否命题 互为 逆否 若p则q 若q则p 互逆 互否 互否 若﹁p则﹁q 若﹁q则﹁p 互为 逆否 否命题 若﹁p则﹁q 逆否命题 若﹁q则﹁p 互逆

一般地,四种命题的真假性,有而且仅有下面四种情况: 原命题 逆命题 否命题 逆否命题 真 假

总结: 想一想? 由以上三例及总结我们能发现什么? 即(1)原命题与逆否命题同真假。 原命题的逆命题与否命题同真假。 (1) 原命题为真,则其逆否命题一定为真。但其逆命题、否命题不一定为真。 (2) 若其逆命题为真,则其否命题一定为真。但其原命题、逆否命题不一定为真。 想一想? 由以上三例及总结我们能发现什么? 即(1)原命题与逆否命题同真假。 原命题的逆命题与否命题同真假。 (两个命题为互逆命题或互否命题,它们的真假性没有关系).

练一练 1.判断下列说法是否正确。 1)一个命题的逆命题为真,它的逆否命题不一定为真; (对) 2)一个命题的否命题为真,它的逆命题一定为真。 (对) 3)一个命题的原命题为假,它的逆命题一定为假。 (错) 4)一个命题的逆否命题为假,它的否命题为假。 (错) 2.四种命题真假的个数可能为( )个。 答:0个、2个、4个。 如:原命题:若A∪B=A, 则A∩B=φ。 (假) 逆命题:若A∩B=φ,则A∪B=A。 (假) 否命题:若A∪B≠A,则A∩B≠φ。 (假) 逆否命题:若A∩B≠φ,则A∪B≠A。 (假)

例1:设原命题是:当c>0时,若a>b, 则ac>bc. 写出它的逆命题、否命题、逆否命题。并分别判断它们的真假。 例题讲解 例1:设原命题是:当c>0时,若a>b, 则ac>bc. 写出它的逆命题、否命题、逆否命题。并分别判断它们的真假。 分析:“当c>0时”是大前提,写其它命题时应该保留。 原命题的条件是“a>b”, 结论是“ac>bc”。 (真) 解:逆命题:当c>0时,若ac>bc, 则a>b. (真) 否命题:当c>0时,若a≤b, 则ac≤bc. (真) 逆否命题:当c>0时,若ac≤bc, 则a≤b.

例2 若m≤0或n≤0,则m+n≤0。写出其逆命题、否命题、逆否命题,并分别指出其假。 分析:搞清四种命题的定义及其关系,注意“且” “或”的 否定为“或” “且”。 解:逆命题:若m+n≤0,则m≤0或n≤0。 (真) 否命题:若m>0且n>0, 则m+n>0. (真) 逆否命题:若m+n>0, 则m>0且n>0. (假) 小结: 在判断四种命题的真假时,只需判断两种命题的真假。因为逆命题与否命题真假等价,逆否命题与原命题真假等价。

反证法

引例 证明:一个三角形中不能有 两个角是直角. 已知:△ABC. 求证:∠A、∠B、∠C中不能 有两个角是直角.

反证法的一般步骤: 假设命题的结论不成立,即假 设结论的反面成立; 从这个假设出发,经过推理论证,得出矛盾; (3) 由矛盾判定假设不正确, 反设 从这个假设出发,经过推理论证,得出矛盾; 归谬 (3) 由矛盾判定假设不正确, 从而肯定命题的结论正确。 结论

反馈练习 用反证法证明,若(x-a)(x-b)≠0,则x ≠a且x ≠b. x=a x=b x=a (x-a)(x-b)=0 x=b 证明 假设_________或_________, 由于____________时,_________________, 与 (x-a)(x-b)≠0矛盾, 又_________时,_________________, 与(x-a)(x-b)≠0矛盾, 所以假设不成立, 从而______________________. x=a x=b x=a (x-a)(x-b)=0 x=b (x-a)(x-b)=0 x ≠a且x ≠b

例 1 用反证法证明:圆的两条不是直径的相交弦不能互相平分。 证明: 假设弦AB、CD被P平分, 已知:如图,在⊙O中,弦AB、CD交于点P,且AB、CD不是直径.求证:弦AB、CD不被P平分. P O B A D C 证明: 假设弦AB、CD被P平分, 由于P点一定不是圆心O,连结OP,根据垂径定理的推论,有 OP⊥AB,OP⊥CD, 即过点P有两条直线与OP都垂直,这与垂线性质矛盾。 所以,弦AB、CD不被P平分。

所以结论“弦AB、CD不被P点平分”成立。 O B A C 证法二 证明: 假设弦AB、CD被P点平分, 连结 AD、BD、BC、AC, 因为弦AB、CD被P点平分,所以四边形ABCD是平行四边形,而圆内接平行四边形必是矩形,则其对角线AB、CD必是⊙O的直径,这与已知条件矛盾。 所以结论“弦AB、CD不被P点平分”成立。

例 2 证明:

演练反馈 用反证法证明: 若方程ax2+bx+c=0 (a ≠0)有两个不相等的实数根, 则b2-4ac>0. 2. 用反证法证明:在△ABC中,若∠C是 直角,则∠B一定是锐角.

总结提炼 1.用反证法证明命题的一般步骤是什么? ①反设 ②归谬 ③结论 2.用反证法证题,矛盾的主要类型有哪些? 用反证法在归谬中所导出的矛盾可以是与题设矛盾,与假设矛盾,与已知定义、公理、定理矛盾,自相矛盾等.

4.小结: 用反证法证明过程中推理论证是要得出矛盾 矛盾有三种可能: (1)与原命题的条件矛盾; (2)与定义、公理、定理等矛盾; (3) 与结论的反面成立矛盾(自相矛盾). 反证法的基本思想: 通过证明原命题的否定是假命题,说明原命题是 真命题.