多元回归分析:渐进性 y = b0 + b1x1 + b2x bkxk + u

Slides:



Advertisements
Similar presentations
英语中考复习探讨 如何写好书面表达 宁波滨海学校 李爱娣. 近三年中考试题分析 评分标准 试卷评分与练习 (2009 年书面表达为例 ) 影响给分的因素: 存在问题 书面表达高分技巧 建议.
Advertisements

迴歸分析與軟體應用 林 國 欽 博士 商學與管理研究所 台南科技大學.
-CHINESE TIME (中文时间): Free Response idea: 你周末做了什么?
人群健康研究的统计方法 预防医学系 指导教师:方亚 电话:
专题八 书面表达.
Performance Evaluation
多元迴歸 Multiple Regression
第十三章 以全球市場行銷策略談科技管理與創新-以三星電子全球布局為例
第五章 要怎麼收穫先那麼栽 教育發展與職業選擇
第三章 隨機變數.
Chapter 8 Liner Regression and Correlation 第八章 直线回归和相关
假設檢定.
Could you please clean your room?
Population proportion and sample proportion
Chapter 2 簡單迴歸模型.
What are samples?. Chapter 6 Introduction to Inferential Statistics Sampling and Sampling Designs.
大眾媒體研究導論 Chapter 4 抽樣 第一部分 研究程序
第十章 兩母體之假設檢定 Inferences Based on Two-Samples:
微積分網路教學課程 應用統計學系 周 章.
第七章 SPSS的非参数检验.
Continuous Probability Distributions
Properties of Continuous probability distributions
Sampling Theory and Some Important Sampling Distributions
第十一章. 簡單直線迴歸與簡單相關 Simple Linear Regression and Simple Correlation
十一、簡單相關與簡單直線回歸分析(Simple Correlations and Simple Linear Regression )
簡單迴歸模型的基本假設 用最小平方法(OLS-ordinary least square)找到一個迴歸式:
创建型设计模式.
非均一性的誤差變異數 and SERIAL CORRELATION
本章大綱 2.1 The Limit of a Function函數的極限 2.2 Limit Laws極限的性質
Chapter 7 Sampling and Sampling Distributions
微软新一代云计算 面向企业的 Office 365 客户培训大纲
Interval Estimation區間估計
第一章.
多元回归分析:估计 y = b0 + b1x1 + b2x bkxk + u 计量经济学导论 刘愿.
Try to write He Mengling Daqu Middle School.
Could you please clean your room?
基于课程标准的校本课程教学研究 乐清中学 赵海霞.
錢買不到的禮物 自動換頁 音樂:海莉·衛斯頓 演唱<Nada Sousou> 日本電影「淚光閃閃」主題曲英文版
Lesson One She Says/He Says 男生女生各說各話
A SMALL TRUTH TO MAKE LIFE 100%
第四章 抽樣與抽樣分配 4.1 抽樣與抽樣方法 抽樣分配概論 常見的抽樣分配 中央極限定理55
Chp.4 The Discount Factor
统 计 学 (第三版) 2008 作者 贾俊平 统计学.
Guide to a successful PowerPoint design – simple is best
第七章 调查数据的分析 第一节 数据集中趋势的测定 第二节 数据离散程度的测定 第三节 动态数据的分析 第四节 相关与回归分析.
抽樣分配 Sampling Distributions
相關統計觀念復習 Review II.
Chp.4 The Discount Factor
情态动词.
关联词 Writing.
Simple Regression (簡單迴歸分析)
The Bernoulli Distribution
Chp.4 The Discount Factor
Philosophy of Life.
高考应试作文写作训练 5. 正反观点对比.
社会研究方法 第7讲:社会统计2.
第二章 经典线性回归模型: 双变量线性回归模型
Nucleon EM form factors in a quark-gluon core model
Review of Statistics.
第四章 常用概率分布 韩国君 教授.
品質管理與實習 : MIL-STD-105E 何正斌 國立屏東科技大學工業管理學系.
第 6 章 统计量及其抽样分布 作者:中国人民大学统计学院 贾俊平 PowerPoint 统计学.
Multiple Regression: Estimation and Hypothesis Testing
Class imbalance in Classification
自主练悟 ①(2017·桂林市联考)To them, life is a competition — they have to do _______ (good) than their peers to be happy. ②(2017·菏泽市模拟)People who forgive.
錢買不到的禮物 自動換頁 音樂:海莉·衛斯頓 演唱<Nada Sousou> 日本電影「淚光閃閃」主題曲英文版
簡單迴歸分析與相關分析 莊文忠 副教授 世新大學行政管理學系 計量分析一(莊文忠副教授) 2019/8/3.
抽樣分配.
Train Track and Children
Gaussian Process Ruohua Shi Meeting
Presentation transcript:

多元回归分析:渐进性 y = b0 + b1x1 + b2x2 + . . . bkxk + u Copyright © 2007 Thomson Asia Pte. Ltd. All rights reserved.

渐进性的含义 如果误差并非正态分布,对任何的样本容量而言,t统计量、F统计量并非恰好服从t分布、F分布。 计量经济学导论 刘愿

一致性 在高斯-马尔科夫假定下,OLS估计是最优线性无偏的,但我们并非总能得到无偏的估计量。 一致性是对一个估计量最起码的要求。在无法满足无偏性的情况下,我们可以搜集尽可能多的样本,即使n→ ∞,参数估计值的分布将逼近真实参数值。 计量经济学导论 刘愿

一致性的正式定义 计量经济学导论 刘愿

一致性的直观理解 计量经济学导论 刘愿

当样本容量增加时的样本分布 计量经济学导论 刘愿

计量经济学导论 刘愿

OLS的一致性 在高斯-马尔科夫假定下,OLS估计值是一致且无偏的。 类似的,我们可以像无偏性一样证明一致性,为此需要引入概率极限。 计量经济学导论 刘愿

简单回归中证明一致性 计量经济学导论 刘愿

一个较弱的假定 为了得到无偏性,我们需要零条件均值假设E(u|x1, x2,…,xk) = 0 为了得到一致性,我们仅需要较弱的假定:零均值和零相关:E(u) = 0 ,Cov(xj,u) = 0, for j = 1, 2, …, k. 不满足上述条件,OLS是有偏和不一致的。 计量经济学导论 刘愿

Deriving the Inconsistency Just as we could derive the omitted variable bias earlier, now we want to think about the inconsistency, or asymptotic bias, in this case 计量经济学导论 刘愿

Asymptotic Bias (cont) So, thinking about the direction of the asymptotic bias is just like thinking about the direction of bias for an omitted variable Main difference is that asymptotic bias uses the population variance and covariance, while bias uses the sample counterparts Remember, inconsistency is a large sample problem – it doesn’t go away as add data 计量经济学导论 刘愿

Summary of Direction of Asymptotic bias Corr(x1, x2) > 0 Corr(x1, x2) < 0 b2 > 0 Positive asymptotic bias Negative asymptotic bias b2 < 0 计量经济学导论 刘愿

Large Sample Inference Recall that under the CLM assumptions, the sampling distributions are normal, so we could derive t and F distributions for testing This exact normality was due to assuming the population error distribution was normal This assumption of normal errors implied that the distribution of y, given the x’s, was normal as well 计量经济学导论 刘愿

Large Sample Inference (cont) Easy to come up with examples for which this exact normality assumption will fail Any clearly skewed variable, like wages, arrests, savings, etc. can’t be normal, since a normal distribution is symmetric Normality assumption not needed to conclude OLS is BLUE, only for inference 计量经济学导论 刘愿

Central Limit Theorem Based on the central limit theorem, we can show that OLS estimators are asymptotically normal Asymptotic Normality implies that P(Z<z)F(z) as n , or P(Z<z)  F(z) (标准正态累积分布函数) The central limit theorem states that the standardized average of any population with mean m and variance s2 is asymptotically ~N(0,1), or 计量经济学导论 刘愿

Theorem 5.2 Asymptotic Normality 计量经济学导论 刘愿

计量经济学导论 刘愿

Law of large numbers 计量经济学导论 刘愿

Asymptotic Normality (cont) Because the t distribution approaches the normal distribution for large df, we can also say that Note that while we no longer need to assume normality with a large sample, we do still need homoskedasticity 计量经济学导论 刘愿

Asymptotic Standard Errors If u is not normally distributed, we sometimes will refer to the standard error as an asymptotic standard error, since So, we can expect standard errors to shrink at a rate proportional to the inverse of √n 计量经济学导论 刘愿

Lagrange Multiplier statistic Once we are using large samples and relying on asymptotic normality for inference, we can use more that t and F stats The Lagrange multiplier or LM statistic is an alternative for testing multiple exclusion restrictions Because the LM statistic uses an auxiliary regression it’s sometimes called an nR2 stat 计量经济学导论 刘愿

LM Statistic (cont) Suppose we have a standard model, y = b0 + b1x1 + b2x2 + . . . bkxk + u and our null hypothesis is H0: bk-q+1 = 0, ... , bk = 0 First, we just run the restricted model 计量经济学导论 刘愿

The idea of LM statistic If the omitted variables xk-q+1 through xk truly have zero population coefficients then, at least approximately, should be uncorrelated with each of these variables in the sample. Running a regression of these residuals on those independent variables excluded under H0, we should get a small enough R2. However, we must include all of the independent variables in the regression for technical reasons. 计量经济学导论 刘愿

LM Statistic (cont) With a large sample, the result from an F test and from an LM test should be similar. LM>c, reject H 计量经济学导论 刘愿

计量经济学导论 刘愿

Example: Economic Model of Crime Narr86为一个人被拘捕的次数; Pcnv为以前被拘捕后被定罪的次数; Avgsen为过去定罪后被判刑的平均时间长度; Tottime为此人在年龄达到18岁后在1986年以前被送进监狱的总次数; Ptime86为1986年坐牢的月数; Qemp86为此人在1986年合法就业的季度数。 计量经济学导论 刘愿

Asymptotic Efficiency Estimators besides OLS will be consistent However, under the Gauss-Markov assumptions, the OLS estimators will have the smallest asymptotic variances We say that OLS is asymptotically efficient Important to remember our assumptions though, if not homoskedastic, not true 计量经济学导论 刘愿

The discussion in the simple regression g(x) is any function of x, let zi=g(x), then u is uncorrelated with zi. 计量经济学导论 刘愿

计量经济学导论 刘愿